A subspace $Y$ in a Banach space $X$ is called Chebyshev subspace if for every $x \in X$ there exists a unique best approximation element in $Y$. J.L.Doob proved in 1940 that the Hardy space $H_1$ is a Chebyshev subspace in the space $L_1[0, 1]$ of complex-valued functions. So, the Hardy space $H_1$ is isometrically isomorphic to the subspace $Y_{\mathbb N} \subset L_1[0, 1]$ defined as the closure of a linear hull of exponents with spectrum in $\mathbb N$. J.-P. Kahane described in 1974 all sets $M$ in $\mathbb Z$ for which the closure of a linear hull of exponents with spectrum in $M$ forms a Chebyshev subspace in $L_1[0, 1]$. There are infinite arithmetic sequences with odd difference. Two types of such sets are possible up to an integer shift: $(2n + 1)\mathbb N$ and $(2n + 1)\mathbb Z$, $n \in \mathbb N\cup\{0\}$. There are different proofs for the sets $\mathbb N$ and $(2n + 1)\mathbb N,\, n \in \mathbb N$ in Kahane's theorem. In the present paper we attempt to partially generalizing Kahane's result in the case of several variables. Thus, we investigate existence and uniqueness of best approximation element in the closure of a linear hull of exponents with spectrum in the intersection of $\mathbb Z^n$ with a half-space bounded by a hyperplane in the space $L_1[0, 1]^n$ of complex-valued functions of $n$ real variables. The proof follows Kahane's proof for the set $\mathbb N$.
Keywords: complex $L_1$ space, Chebyshev subspace, Kahane's theorem, nicely placed subset, Abelian discrete group
Received June 10, 2025
Revised September 1, 2025
Accepted September 8, 2025
Borislav Borisovich Bednov, Cand. Sci. (Phys.-Math.), Sechenov University, Moscow, 119991 Russia, e-mail: noriiii@inbox.ru
REFERENCES
1. Efimov N.V., Stechkin S.B. Some properties of Chebyshev sets. Dokl. Akad. Nauk SSSR, 1958, vol. 118, no. 1, pp. 17–19 (in Russian).
2. Kripke B.R., Rivlin T.J. Approximation in the metric of $L^1(X, \mu)$. Trans. Amer. Math. Soc., 1965, vol. 119, no. 1, pp. 101–122. https://doi.org/10.2307/1994233
3. Rubinstein G.S. On one extremal problem in a linear normed space. Sib. Math. J., 1965, vol. 6, no. 3, pp. 711–714 (in Russian).
4. Singer I. Best approximation in normed linear spaces by elements of linear subspaces. Berlin, Heidelberg, Springer, 1970, 415 p. https://doi.org/10.1007/978-3-662-41583-2
5. Doob J.L. A minimum problem in the theory of analytic functions. Duke Math. J., 1941, vol. 8, no. 3, pp. 413–424. https://doi.org/10.1215/S0012-7094-41-00834-7
6. Kahane J.-P. Best approximation in $L^1(T)$. Bull. Amer. Math. Soc., 1974, vol. 80, no. 5, pp. 788–804. https://doi.org/10.1090/S0002-9904-1974-13518-4
7. Borodin P.A. Chebyshev subspaces in the Hardy space $H^1$. Anal. Math., 1999, vol. 25, no. 1, pp. 243–264 (in Russian). https://doi.org/10.1007/BF02908440
8. Privalov I.I. Granichnyye svoystva analiticheskikh funktsiy [Boundary properties of analytic functions], Moskva, Leningrad, Gos. izd-vo tekhniko-teoreticheskoy literatury, 1950, 338 p.
9. Rudin W. Real and complex analysis. NY, London, Sydney, McGraw-Hill, Inc., 1966, 412 p.
10. Shapiro J. Subspaces of $L^p(G)$ spanned by characters, $0 < p < 1$. Israel J. Math., 1978, vol. 29, pp. 248–264. https://doi.org/10.1007/BF02762013
11. Bochner S. Boundary values of analytic functions in several variables and of almost periodic functions. Ann. Math., 1944, vol. 45, no. 4, pp. 708–722. https://doi.org/10.2307/1969298
12. Rudin W. Trigonometric series with gaps. J. Math. Mech., 1960, vol. 9, no. 2, pp. 203–227. https://doi.org/10.1512/IUMJ.1960.9.59013
13. Alexandrov A.B. Essays on non locally convex hardy classes. In: Havin V. P., Nikol’skii N. K. (eds.) Complex analysis and spectral theory. Lecture notes in mathematics, vol. 864. Berlin, Heidelberg, Springer, 1981, pp. 1–89. https://doi.org/10.1007/BFb0096996
14. Meyer Y. Spectres des mesures et mesures absolument continues. Studia Math., 1968, vol. 30, no. 1, pp. 87–99. http://eudml.org/doc/217267
15. Godefroy G. On Riesz subsets of Abelian discrete groups. Israel J. Math., 1988, vol. 61, no. 3, pp. 301–331. https://doi.org/10.1007/BF02772575
16. Kantorovich L.V., Akilov G.P. Functional analysis. NY, Pergamon Press, 1982, 604 p. doi: 10.1016/C2013-0-03044-7 . Original Russian text published in Kantorovich L. V., Akilov G. P. Funktsional’nyi analiz, Moscow, Nauka Publ., 1977, 741 p.
17. Hensgen W. Extremal problems for the vector-valued $\langle L^1/H_0^1, H^\infty\rangle$ duality. J. Approx. Theory, 1996, vol. 84, no. 2, pp. 162–171. https://doi.org/10.1006/jath.1996.0013
18. Arias A., Mascioni V. Best approximations in preduals of von Neumann algebras. J. London Math. Soc., 1992, vol. S2-46, no. 3, pp. 491–498. https://doi.org/10.1112/jlms/s2-46.3.491
Cite this article as: B.B. Bednov. Half-space from $\mathbb Z^n$ forms a Chebyshev subspace in $\mbox{L_1[0, 1]^n}$. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 62–70.