A.E. Artisevich. On the mobility of the main values of the oscillation exponents of the signs of linear differential equations under infinitesimal perturbations... P. 26-38

On a set of linear homogeneous differential equations of higher than second order with continuous coefficients on the positive semi-axis, all possible relationships between the principal values of the oscillation exponents (strict and non-strict) of the signs were established, and a study was also conducted on the stability of all principal values with respect to infinitesimal perturbations (i.e., vanishing at infinity) of the equation coefficients. In the work, a multiparameter family of differential equations of a given order n ≥ 3 is constructed, on which strict inequalities between the main values of the characteristic frequencies and oscillation exponents are realized. For fixed values of the sequence of parameters, we highlight points from the indicated family of equations in which all the main values of the oscillation exponents are not invariant under infinitesimal perturbations. In addition, on the set of all non-zero solutions of the specified family of equations all oscillation exponents are exact, absolute and coincide with the exact characteristic frequency of signs. In constructing the specified family of equations and proving the required results, analytical methods of the qualitative theory of differential equations and methods of the theory of perturbations of solutions of linear differential equations were used. In particular, the method of varying an equation, which allows the original differential equation to be transformed in a special way so that it has predetermined properties. Examples of the transition from one differential equation to another are also given in order to generalize the properties of the characteristic frequencies of signs and to exponents of the oscillation of signs.

Keywords: differential equation, linear system, oscillation, number of zeros, exponents of oscillation, Characteristic frequency, stability, Lyapunov’s exponent

Received September 8, 2025

Revised September 27, 2025

Accepted October 6, 2025

Funding Agency: The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment No. 075-03-2024-074/5 for the project “Study of asymptotic characteristics of the oscillation of differential equations and systems, as well as optimization methods”.

Angela Evgenievna Artisevich, Adyghe state University, Maykop, 385000 Russia, e-mail: artisevichangela@gmail.com

REFERENCES

1.   Sergeev I.N. Definition and properties of characteristic frequencies of a linear equation. J. Math. Sci., 2006, vol. 135, no. 1, pp. 2764–2793. https://doi.org/10.1007/s10958-006-0142-6

2.   Sergeev I.N. Oscillation and wandering characteristics of solutions of a linear differential systems. Izv. Math., 2012, vol. 76, no. 1, pp. 139–162. https://doi.org/10.1070/IM2012v076n01ABEH002578

3.   Sergeev I.N. The complete set of relations between the oscillation, rotation and wandering indicators of solutions of differential systems. Izv. In-ta Mat. Inf. Udm. Gos. Univ., 2015, no. 2 (46), pp. 171–183 (in Russian).

4.   Bykov V.V. On the baire classification of Sergeev frequencies of zeros and roots of solution of linear differential equation. Diff. Equat., 2016, vol. 52, no. 4, pp. 413–420. https://doi.org/10.1134/S0012266116040029

5.   Voidelevich A.S. On spectra of upper Sergeev frequencies of linear differential equation. J. Belarus. Gos. Univ. Mat. Inf., 2019, no. 1, pp. 28–32 (in Russian).

6.   Sergeev I.N. Oscillation, rotatability, and wandering characteristic indicators for differential systems determining rotations of plane. Moscow Univ. Math. Bull., 2019, vol. 74, pp. 20–24. https://doi.org/10.3103/S0027132219010042

7.   Stash A.Kh. On the discontinuity of extreme exponents of oscillation on a set of linear homogeneous differential systems. Diff. Uravn. i processy upravleniya, 2023, no. 1, pp. 78–109 (in Russian).

8.   Stash A.Kh., Artisevich A.E. On some properties of the main values of the oscillation exponents of signs of linear differential equations of the third order. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2025, vol. 35, no. 2, pp. 281–295 (in Russian). https://doi.org/10.35634/vm250208

9.   Sergeev I.N. Properties of characteristic frequencies of linear equations of arbitrary order. J. Math. Sci., 2014, vol. 197, no. 3, pp. 410–426. https://doi.org/10.1007/s10958-014-1723-4

10.   Sergeev I.N. Controlling solutions to a linear differential equation. Vestn. Moskov. Universiteta, Ser. 1. Matematika. Mekhanika, 2009, no. 3, pp. 25–33 (in Russian).

11.   Goritskii A.Y., Fisenko T.N. Characteristic frequencies of zeros of a sum of two harmonic oscillations. Diff. Equat., 2012, vol. 48, no. 4, pp. 486–493. https://doi.org/10.1134/S0012266112040039

12.   Stash A.Kh. Properties of complete and vector sign frequencies of solutions of linear autonomous differential equations. Diff. Equat., 2014, vol. 50, no. 10, pp. 1413–1417. https://doi.org/10.1134/S0012266114100206

13.   Stash A.Kh. On infinite spectra of oscillation exponents of third-order linear differential equations. Russ. Math., 2024, vol. 68, no. 4, pp. 42–59. https://doi.org/10.3103/S1066369X24700270

14.   Smolentsev M.V. Example of a third-order periodic differential equation whose frequency spectrum contains a closed interval. Diff. Equat., 2014, vol. 50, no. 10, pp. 1408–1412. https://doi.org/10.1134/S001226611410019X

15.   Stash A.Kh. On the control of the spectra of upper strong oscillation exponents of signs, zeros, and roots of third-order differential equations. Diff. Equat., 2023, vol. 59, no. 5, pp. 597–605. https://doi.org/10.1134/S0012266123050038

16.   Stash A.Kh., Artisevich A.E. Existence of infinite, everywhere discontinuous spectra of upper exponents of oscillation of signs, zeros, and roots of third-order differential equations. Moscow Univ. Math. Bull., 2023, vol. 78, no. 5, pp. 223–229.  https://doi.org/10.3103/S0027132223050054

17.   Barabanov E.A., Voidelevich A.S. Remark on the theory of Sergeev frequencies of zeros, signs and roots for solution of linear differential equation. I. Diff. Equat., 2016, vol. 52, no. 10, pp. 1249–1267. https://doi.org/10.1134/S0012266116100013

18.   Barabanov E.A., Voidelevich A.S. Remark on the theory of Sergeev frequencies of zeros, signs and roots for solution of linear differential equation. II. Diff. Equat., 2016, vol. 52, no. 12, pp. 1523–1538. https://doi.org/10.1134/S0012266116120016

19.   Filippov A.F. Vvedeniye v teoriyu differentsial’nykh uravneniy [Introduction to the theory of differential equations]. Moscow, Editorial URSS, 2004, 240 p. ISBN: 5-354-00416-0 .

20.   Pólya G., Szegö G. Aufgaben und lehrsätze aus der analysis, vol. 2. NY, Dover Publ., 1945, 440 p. Translated to Russian under the title Zadachi i teoremy iz analiza, Moscow, Nauka Publ., 1978, vol. 2, 432 p.

Cite this article as: A.E. Artisevich. On the mobility of the main values of the oscillation exponents of the signs of linear differential equations under infinitesimal perturbations. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 26–38.