The article considers the Lorentz space $L_{q, \tau}(\mathbb{T}^{m})$ of periodic functions of $m$ variables and the class $W_{q, \tau}^{a, b(\cdot), \overline{r}}$ for $1<q, \tau <\infty$, $a>0$, $b(t)$ is a slowly varying function on $[1, \, \infty )$. $W_{q, \tau}^{a, b(\cdot), \overline{r}}$ the class of all functions $f\in L_{q, \tau}(\mathbb{T}^{m})$ for which $S_{n}^{(\overline\gamma)}(f,\overline{x})$ the partial sum over the step hyperbolic cross of the Fourier series in the norm of $L_{q, \tau}(\mathbb{T}^{m})$ converges at rate $2^{-na}b(2^{n})$ as $n\rightarrow \infty$. The main result is the exact order of the best $n$-term trigonometric approximations of functions from the class $W_{q, \tau_{1}}^{a, b(\cdot), \overline{r}}$ in the norm of the space $L_{p, \tau_{2}}(\mathbb{T}^{m})$ in the case $1<q<p\leqslant 2$, for some relations between the parameters $a$, $\tau_{1}$, $\tau_{2}$. The result is proved by a constructive method.
Keywords: Lorentz space, trigonometric system, best $n$-term approximation, constructive method
Received April 30, 2025
Revised September 9, 2025
Accepted September 21, 2025
Funding Agency: The work was carried out with the financial support of the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant no. AP19677486).
Gabdolla Akishev, Dr. Phys.-Math. Sci., Prof., Lomonosov Moscow University, Kazakhstan Branch, Astana, 100001 Kazakhstan; Institute of Mathematics and Mathematical Modeling, Almaty, 050010 Kazakhstan, e-mail: akishev_g@mail.ru
REFERENCES
1. Stein E.M., Weiss G. Introduction to Fourier analysis on euclidean spaces, Princeton, Princeton Univ. Press, 1971, 312 p. ISBN: 9780691080789 . Translated to Russian under the title Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Moscow, Mir Publ., 1974, 333 p.
2. Nikol’skii S.M. Approximation of functions of several variables and embedding theorems, NY, Springer, 1975, 420 p. https://doi.org/10.1007/978-3-642-65711-5 . Original Russian text published in Nikol’skii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Moscow, Nauka Publ., 1969, 480 p.
3. Temlyakov V. Multivariate approximation. Cambridge, Cambridge Univ. Press, 2018, 551 p. https://doi.org/10.1017/9781108689687
4. Stechkin S.B. On the absolute convergence of orthogonal series. Dokl. Akad. Nauk SSSR, 1955, vol. 102, no. 2, pp. 37–40 (in Russian).
5. Ismagilov R.S. Widths of sets in linear normed spaces and the approximation of functions by trigonometric polynomials. Uspekhi Mat. Nauk, 1974, vol. 29, no. 3, pp. 161–178.
6. DeVore R.A. Nonlinear approximation. Acta Numerica, 1998, vol. 7, pp. 51–150. https://doi.org/10.1017/s0962492900002816
7. Dinh Dũng, Temlyakov V.N., Ullrich T. Hyperbolic cross approximation. Advanced courses in mathematics. Cham, Birkhäuser, 2018, 222 p. https://doi.org/10.1007/978-3-319-92240-9
8. Temlyakov V.N. Greedy approximation. Cambridge, Cambridge Univ. Press, 2011, 434 p.
9. Temlyakov V.N. Greedy algorithm and $m$-term trigonometric approximation. Constr. Approx., 1998, vol. 14, pp. 569–587. https://doi.org/10.1007/s003659900090
10. Temlyakov V.N. Greedy algorithms in Banach spaces. Adv. Comp. Math., 2001, vol. 14, no. 3, pp. 277–292. https://doi.org/10.1023/A:1016657209416
11. Bazarkhanov D.B., Temlyakov V.N. Nonlinear tensor product approximation of functions. J. Complexity, 2015, vol. 31, no. 6, pp. 867–884. https://doi.org/10.1016/j.jco.2015.06.005
12. Temlyakov V.N. Sampling recovery on function classes with a structural condition. 2024, 25 p. https://doi.org/10.48550/arXiv.2404.07210
13. Garrigós G. The $WCGA$ in $L_{p}(\log L)^{\alpha}$ spaces. Constr. Approx., 2025, vol. 61, pp. 115–147. https://doi.org/10.1007/s00365-023-09664-y
14. Temlyakov V.N. Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness. Sb. Math., 2015, vol. 206, no. 11, pp. 1628–1656. https://doi.org/10.1070/SM2015v206n11ABEH004507
15. Temlyakov V.N. Constructive sparse trigonometric approximation for functions with small mixed smoothness. Constr. Approx., 2017, vol. 45, no. 3, pp. 467–495. https://doi.org/10.1007/s00365-016-9345-3
16. Bazarkhanov D.B. Nonlinear trigonometric approximation of multivariate function classes, Proc. Steklov Inst. Math., 2016, vol. 293, pp. 2–36. https://doi.org/10.1134/S0081543816040027
17. Zygmund A. Trigonometric series. Cambridge, Cambridge Univ. Press, 1959, vol. I, 404 p. Translated to Russian under the title Trigonometricheskie ryady, Moscow, Mir Publ., 1965, vol. I, 615 p.
18. Akishev G. Estimates of $M$-term approximations of functions of several variables in the Lorentz space by a constructive methods. Eurasian Math. J., 2024, vol. 15, no. 2, pp. 8–32. https://doi.org/10.32523/2077-9879-2024-15-2-08-32
19. Akishev G. Estimation of the best approximations of the functions Nikol’skii — Besov class in the space of Lorentz by trigonometric polynomials. Trudy Inst. Mat. Mekh. UrO RAN, 2020, vol. 26, no. 2, pp. 5–27. https://doi.org/10.21538/0134-4889-2020-26-2-5-27
20. Temlyakov V.N. Approximation of functions with bounded mixed derivative. Proc. Steklov Inst. Math., 1989, vol. 178, pp. 1–121.
21. Simonov B.V. Embedding Nikol’skii classes into Lorentz spaces. Sib. Math. J., 2010, vol. 51, no. 4, pp. 728–744. https://doi.org/10.1007/s11202-010-0074-8
22. Edmunds D. E., Evans W. D. Hardy operators, function spaces and embedding. Berlin Heidelberg, Springer-Verlag, 2004, 333 p.
23. Akishev G. On the best $n$-term approximations of functions in Lorentz space. In: Proc. Inter. Voronezh Winter Mathematical School “Modern methods of function theory and related problems“, Voronezh, 2021, pp. 29–31 (in Russian).
Cite this article as: G. Akishev. On estimates of $n$-term approximations of functions in Lorentz space. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 10–25.