E.M. Vechtomov. On upper conditionally complete generalized Boolean lattices... P. 85-94

The article studies generalized Boolean lattices. It provides spectral characterizations of generalized Boolean lattices. The purpose of the article is to investigate properties of upper conditionally complete generalized Boolean lattices. The author gives abstract characterizations of such lattices and proves a generalization of the well-known theorem that the completeness of any Boolean lattice is equivalent to the extremally disconnection of its maximal spectrum. The work also considers upper conditionally $m$-complete generalized Boolean lattices for arbitrary infinite cardinality $m$, and provides examples and comments.

Keywords: generalized Boolean lattice, maximal spectrum, conditional completeness, extremally disconnected space, direct summand

Received October 13, 2024

Revised December 3, 2024

Accepted January 11, 2025

Published online March 20, 2025

Funding Agency: This work was by the Russian Science Fond under the state contract “Semirings and semimodules with idempotent conditions” (project no. 24-21-00117).

Evgenii Mikhailovich Vechtomov, Dr. Phys.-Math. Sci., Prof., Vyatka State University, Kirov, 610000, Russia, e-mail: vecht@mail.ru

REFERENCES

1.   Vechtomov E.M. Distributive lattices with different annihilator properties. Trudy Inst. Mat. Mekh. UrO RAN, vol. 31, no. 1, pp. 53–65 (in Russian). https://doi.org/10.21538/0134-4889-2025-31-1-fon-01

2.   Vechtomov E.M., Shirokov D.V. Uporyadochennyye mnozhestva i reshetki [Ordered sets and lattices]. St. Petersburg, Lan’ Publ., 2024, 249 p. ISBN: 978-5-507-48266-5 .

3.   Grätzer G. General lattice theory. Basel, Birkhäuser, 1978, 381 p. https://doi.org10.1007/978-3-0348-7633-9 . Translated to Russian under the title Obshchaya teoriya reshetok, Moscow, Mir Publ., 1982, 452 p.

4.   Sikorski R. Boolean algebras. NY, Acad. Press, 1964, 237 p. Translated to Russian under the title Bulevy algebry, Moscow, Nauka Publ., 1969, 376 p.

5.   Engelking R. General topology, Warsaw, PWN, 1977. Translated to Russian under the title Obshchaya topologiya, Moscow, Mir Publ., 1986, 751 p.

6.   Gillman J., Jerison M. Rings of continuous functions. Ser. The university series in higher mathematics, vol. 43, NY, Springer, 1976. 300 p. ISBN-10: 0387901981 .

7.   Stone M.H. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 1936, vol. 40, no. 1, pp. 37–111. https://doi.org/10.1090/S0002-9947-1936-1501865-8

8.   Gleason A. Projective topological spaces. Illinois J. Math., 1958, vol. 2, no. 4A, pp. 482–489. https://doi.org/10.1215/ijm/1255454110

9.   Vechtomov E.M. Rings of continuous functions. Algebraic aspects. J. Math. Sci., 1994, vol. 71, no. 2, pp. 2364–2408. https://doi.org/10.1007/BF02111022

10.   Stone M.H. Boundedness properties in function-lattices. Canad. J. Math., 1949, vol. 1, no. 2, pp. 176–186. https://doi.org/10.4153/CJM-1949-016-5

11.   Johnson D.G., Kist J.E. Complemented ideals externally disconnected spaces. Arch. Math., 1961, vol. 11, no. 5, pp. 349–354. https://doi.org/10.1007/BF01650573

Cite this article as: E.M. Vechtomov. On upper conditionally complete generalized Boolean lattices. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 85–94.