A.R. Alimov, I.G. Tsar’kov. Projection closed sets and Efimov–Stechkin spaces ... P. 20-35

The paper is concerned with problems of existence, uniqueness, and stability of best approximants and related problems of solarity for not necessarily closed sets (in particular, such sets are not necessarily proximinal). We give definitions of the projection boundary and of a projection closed set. We show that  if $X$ is a symmetrizable asymmetric Efimov–Stechkin space, then the set of points of approximative compactness of any nonempty projection closed set $M\subset X$ is of second category in the metric exterior  $\operatorname{out}(M)$ of the set $M$. We also study relations between classes of sets in asymmetric Efimov–Stechkin spaces. We show that if  $X$ is a symmetrizable Efimov–Stechkin space, $M\subset X$ is projection closed, and  $\ell_0P_0$-connected, then  $M$ is $\ell_0\overset{\ \circ}{B}$-connected. Solarity problem for sets of uniqueness is studied. In particular, the well-known theorem dating back to V.I. Berdyshev and V.L. Klee on solarity of boundedly  compact Chebyshev sets is extended to the case of sets of uniqueness. Results on solarity of boundedly precompact projection closed sets of uniqueness are obtained. We also obtain results on preservation of solarity and other approximative properties of sets when changing to closed  neighborhoods $M+B(x,r)$ of sets. Special attention is given to the case of Chebyshev suns, for which a characterization theorem is obtained.

Keywords: projection boundary, projection closed set, connected set, best approximation, sun, Chebyshev sun, Efimov–Stechkin space, metrical exterior of a set, approximative compactness, approximative precompactness

Received April 1, 2025

Revised June 6, 2025

Accepted June 9, 2025

Funding Agency: The paper was published with the financial support of the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under the agreement no. 075-15-2025-013.

Alexey R. Alimov, Dr. Phys.-Math. Sci., Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119899 Russia; St. Petersburg State University, St. Petersburg, 199034 Russia, e-mail: alexey.alimov-msu@yandex.ru

Igor’ G. Tsar’kov, Prof., Dr. Phys.-Math. Sci., Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119899 Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, 119899 Russia, e-mail: tsar@mech.math.msu.su

REFERENCES

1.   Braess D. Nonlinear approximation theory. Springer Ser. Comput. Math., vol. 7. Berlin, Heidelberg, Springer, 1986, 290 p. https://doi.org/10.1007/978-3-642-61609-9

2.   Alimov A.R., Tsar’kov I.G. Geometric approximation theory. Springer Monogr. Math. Ser. Cham, Springer, 2021, 508 p. https://doi.org/10.1007/978-3-030-90951-2

3.   Efimov N.V., Stechkin S.B. Some properties of Chebyshev sets. Dokl. Akad. Nauk SSSR, 1958, vol. 118, no. 1, pp. 17–19 (in Russian).

4.   Efimov N.V., Stechkin S.B. Chebyshev sets in Banach spaces. Dokl. Akad. Nauk SSSR, 1958, vol. 121, no. 4, pp. 582–585 (in Russian).

5.   Efimov N.V., Stechkin S.B. Support properties of sets in Banach spaces and Chebyshev sets. Dokl. Akad. Nauk SSSR, 1959, vol. 127, no. 2, pp. 254–257 (in Russian).

6.   Efimov N.V., Stechkin S.B. Approximate compactness and Chebyshev sets. Soviet Math. Dokl., 1961, vol. 2, pp. 1226–1228 (in Russian).

7.   Alimov A.R., Tsar’kov I.G. Connectedness and approximative properties of sets in asymmetric spaces. Filomat, 2024, vol. 38, no. 9, pp. 3243–3259. https://doi.org/10.2298/FIL2409243A

8.  García-Raffi L.M., Romaguera S., Sánchez Pérez E.A On Hausdorff asymmetric normed linear spaces. Houston J. Math., 2003, vol. 2, no. 3, pp. 717–728.

9.   Cobzaş  S. Compact bilinear operators on asymmetric normed spaces. Topology Appl., 2022, vol. 306, art. no. 107922, 23 p. https://doi.org/10.1016/j.topol.2021.107922

10.   Alimov A.R., Tsar’kov I.G. Stability of best approximation in classical problems of geometric approximation theory. Izv. RAN. Ser. Mat., 2025 (in Russian). https://doi.org/10.4213/im9660

11.   Borwein J.M., Fitzpatrick S. Existence of nearest points in Banach spaces. Canad. J. Math., 1989, vol. 41, no. 4, pp. 702–720. https://doi.org/10.4153/CJM-1989-032-7

12.   Tsar’kov I.G. Properties of at most countable unions of pairwise disjoint sets in asymmetric spaces. Sb. Math., 2025, vol. 216, no. 2, pp. 257–269. https://doi.org/10.4213/sm10104e

13.   Singer I. Some remarks on approximative compactness. Rev. Roum. Math. Pures Appl., 1964, vol. 9, no. 2, pp. 167–177.

14.   Alimov A.R., Tsar’kov I.G. Approximatively compact sets in asymmetric Efimov–Stechkin spaces and convexity of almost suns. Math. Notes, 2021, vol. 110, no. 6, pp. 947–951. https://doi.org/10.1134/S0001434621110316

15.   Tsar’kov I.G. Relations between certain classes of sets in Banach spaces. Math. Notes, 1986, vol. 40, no. 2, pp. 597–610. https://doi.org/10.1007/BF01159114

16.   Alimov A.R., Tsar’kov I.G. Connectedness and solarity in problems of best and near-best approximation. Russian Math. Surv., 2016, vol. 71, no. 1, pp. 1–77. https://doi.org/10.1070/RM9698

17.   Stechkin S.B. Approximative properties of sets in normed linear spaces. Rev. Math. Pures Appl., 1963, vol. 8, no. 1, pp. 5–18 (in Russian).

18.   Konyagin S.V. On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces. Dokl. Akad. Nauk SSSR, 1980, vol 251, no. 2, pp. 276–280 (in Russian).

19.   Konyagin S.V. Approximative properties of sets in normed linear spaces. Dno. Cand. Phys.-Math. Sci., Moscow, MGU, 1982, 100 p. (in Russian).

20.   Karlov M.I. Approximative properties of compact $C^2$-manifolds in Hilbert space. East J. Approx., 1996, vol. 2, pp. 197–204.

21.   Alimov A.R., Tsar’kov I.G.  -complete sets: approximative and structural properties. Sib. Math. J., 2022, vol. 63, pp. 412–420. https://doi.org/10.1134/S0037446622030028

22.   Berdyshev V.I. On Chebyshev sets. Dokl. Akad. Nauk AzSSR, 1966, vol. 22, no. 9, pp. 3–5 (in Russian).

23.   Klee V.L. Convex bodies and periodic homeomorphism in Hilbert space. Trans. Amer. Math. Soc., 1953, vol. 4, pp. 10–43.

24.   Koshcheev V.A. The connectivity and approximative properties of sets in linear normed spaces. Math. Notes, 1975, vol. 17, no. 2, pp. 114–119. https://doi.org/10.1007/BF01161866

25.   Koshcheev V.A. Some properties of the δ-projection in normed linear spaces. Sov. Math. (Iz. VUZ), 1976, vol. 20, no. 5, pp. 26–30.

26.   Vlasov L.P. Approximative properties of sets in normed linear spaces. Rus. Math. Surv., 1973, vol. 28, no. 6, pp. 1–66. https://doi.org/10.1070/RM1973v028n06ABEH001624

27.   Pyatyshev I.A. Operations on approximatively compact sets. Math. Notes, 2007, vol. 82, no. 5, pp. 653–659. https://doi.org/10.1134/S0001434607110089

28.   Alimov A.R., Karlov M.I. Sets with external Chebyshev layer. Math. Notes, 2001, vol. 69, no. 2, pp. 269–273. https://doi.org/10.1023/A:1002836705675

29.   Balaganskii V.S. Approximative properties of sets in Hilbert space. Math. Notes, 1982, vol. 31, no. 5, pp. 397–404. https://doi.org/10.1007/BF01145720

Cite this article as: A.R. Alimov, I.G. Tsar’kov. Projection closed sets and Efimov–Stechkin spaces. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 3, pp. 20–35.