A.L.  Ageev, T.V.  Antonova. Study of separation-based methods for localization of discontinuity lines ... P. 5-19

The ill-posed problem of determining the position (localization) of discontinuity lines of a function of two variables from noisy data is considered. The function is assumed to be smooth outside the discontinuity lines and to have a discontinuity of the first kind on these lines. At each node of a uniform grid with step $\tau$, the mean values of the perturbed function on a square with side $\tau$ are known. The perturbed function approximates the exact function in space $L_2(\mathbb{R}^2).$ It is assumed that the level of perturbation $\sigma$ is known. The discontinuity lines are localized using methods based on the separation of the original noisy data that has been constructed and investigated. This paper shows that, compared to the averaging methods in the authors’ previous works, separation methods provide a guaranteed estimate of the localization accuracy over a wider class of correctness, i.e., under substantially weaker conditions on the discontinuity line. For the sake of simplicity, it is assumed that the discontinuity lines are polygonal. The requirements for grid step size and angles have been relaxed. Estimates of the approximation accuracy and other important characteristics of the constructed method are obtained. As demonstrated by the provided examples, in the case of nonsmooth boundaries, separation-based methods guarantee better approximation accuracy than averaging methods. The algorithm in this paper can be used in the construction of separation-based methods for approximating fractal discontinuity lines.

Keywords: ill-posed problems, regularization method, discontinuity line, data separation, global localization, Lipschitz condition

Received March 17, 2025

Revised May 3, 2025

Accepted May 12, 2025

Published online June 19, 2025

Alexander Leonidivich Ageev, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: ageev@imm.uran.ru

Tatiana Vladimirovna Antonova, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: tvantonova@imm.uran.ru

REFERENCES

1.   Tikhonov A.N., Arsenin V.Ya. Methods for solutions of ill-posed problems. Transl. from the 2nd Russian ed., NY, Wiley, 1977, 258 p. ISBN: 0470991240 . Original Russian text published in Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach, Moscow, Nauka Publ., 1979, 285 p.

2.   Vasin V.V., Ageev A.L. Ill-posed problems with a priori information, Utrecht, VSP, 1995, 255 с. ISBN: 906764191X . Original Russian text was published in Vasin V. V., Ageev A. L. Nekorrektnye zadachi s apriornoi informatsiei, Yekaterinburg, Ural Publ. House “Nauka”, 1993, 264 p. ISBN: 5-7691-0390-6 .

3.   Canny J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intel., 1986, vol. PAMI-8, no. 6, pp. 679–698. https://doi.org/10.1109/TPAMI.1986.4767851

4.   Gonzalez R.C., Woods R.E. Digital image processing (3rd Edt.), Pearson, 2006, 976 p. ISBN: 013168728X . Translated to Russian under the title Tsifrovaya obrabotka izobrazhenii, Moscow, Tekhnosfera Publ., 2012, 1104 p. ISBN 978-5-94836-331-8 .

5.   Gao B., Li X., Woo W.L., Tian G.Y. Physics-based image segmentation using first order statistical properties and genetic algorithm for inductive termography imaging. IEEE Trans. Image Process, 2018, vol. 27, no. 5, pp. 2160–2175. https://doi.org/10.1109/TIP.2017.2783627

6.   Xiao X., Zhou Y. Content-adaptive superpixel segmentation. IEEE Trans. Image Process, 2018, vol. 27, no. 6, pp. 2883–2896. https://doi.org/10.1109/TIP.2018.2806201

7.   Saha M., Chakraborty C. Her2Net: a deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation. IEEE Trans. Image Process, 2018, vol. 27, no. 5, pp. 2189–2200. https://doi.org/10.1109/TIP.2018.2795742

8.   Ageev A.L., Antonova T.V. New accuracy estimates for methods for localizing discontinuity lines of a noisy function. Numer. Analys. Appl., 2020, vol. 13, no. 4, pp. 293–305. https://doi.org/10.1134/S1995423920040011

9.   Luo S., Tong L., Chen Y. A multi-region segmentation method for SAR images based on the multi-texture model with level sets. IEEE Trans. Image Process, 2018, vol. 27, no. 5, pp. 2560–2574. https://doi.org/10.1109/TIP.2018.2806201

10.   Ageev A.L., Antonova T.V. On the localization of fractal lines of discontinuity from noisy data. Russ. Math., 2023, vol. 67, no. 9, pp. 23–38. https://doi.org/0.3103/S1066369X23090037

Cite this article as: A.L. Ageev, T.V. Antonova. Study of separation-based methods for localization of discontinuity lines. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025. vol. 31, no. 3, pp. 5–19.