N.M. Dmitruk. Optimal multiple-closed measurement feedback in the linear optimal control problem ... P.108-124

This paper addresses а terminal problem of optimal guaranteed control for a linear continuous system with disturbances whose output is measured with a bounded error. A problem for constructing an optimal multiple-closed control strategy is formulated, based on which the optimal multiple-closed measurement feedback is defined.  Algorithms for calculating optimal strategies and implementing optimal closed feedback in real time are proposed.

Keywords: linear system, disturbances, measurements, robust optimal control, control strategy, feedback, computational algorithm

Received February 15, 2025

Revised April 17, 2025

Accepted April 21, 2025

Funding Agency: This work was supported by the National Program for Scientific Research of the Republic of Belarus “Convergence 2025” (project no. 1.2.04.1).

Natalia Mikhailovna Dmitruk, Cand. Sci. (Phys.-Math.), Belarusian State University, Minsk, 220030 Belarus, e-mail: dmitrukn@bsu.by

REFERENCES

1.   Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under the conditions of uncertainty]. Moscow, Nauka Publ., 1977, 392 p.

2.   Kurzhanski A., Varaiya P. Dynamics and control of trajectory tubes: theory and computation. Boston, Birkhäuser, 2014, 445 p. https://doi.org/10.1007/978-3-319-10277-1

3.   Krasovskiy N.N. Upravleniye dinamicheskoy sistemoy. Zadacha o minimume garantirovannogo rezul’tata [Dynamic system control. Minimum guaranteed result problem], Moscow, Nauka Publ., 1985, 520 p.

4.   Lee J.H., Yu Z. Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 1997, vol. 33, iss. 5, pp. 763–781.
https://doi.org/10.1016/S0005-1098(96)00255-5

5.   Goulart P.J., Kerrigan E.C., Maciejowski J.M. Optimization over state feedback policies for robust control with constraints. Automatica, 2006, vol. 42, iss. 4, pp. 523–533. https://doi.org/10.1016/j.automatica.2005.08.023

6.   Gabasov R., Kirillova F.M., Kostina E.A. Closed-loop state feedback for optimization of uncertain control systems. II: Multiply closed feedback. Autom. Remote Control, 1996, vol. 57, no. 8, pp. 1137–1145.

7.   Kostina E., Kostyukova O. Worst-case control policies for (terminal) linear-quadratic control problems under disturbances. Inter. J. Robust and Nonlinear Control, 2009, vol. 19, no. 17, pp. 1940–1958. https://doi.org/10.1002/rnc.1417

8.   Kurzhanski A.B., Varaiya P. On reachability under uncertainty. SIAM J. Control Optim., 2002, vol. 41, no. 1, pp. 181–216. https://doi.org/10.1109/CDC.2002.1184818

9.   Balashevich N.V., Gabasov R., Kirillova F.M. The construction of optimal feedback from mathematical models with uncertainty. Comput. Math. Math. Phys., 2004, vol. 44, no. 2, pp. 247–267.

10.   Dmitruk N.M. Multiply closed control strategy in a linear terminal problem of optimal guaranteed control. Proc. Steklov Inst. Math. (Suppl.), 2022, vol. 319, suppl. 1, pp. S112–S128. https://doi.org/10.1134/S0081543822060104

11.   Dmitruk N.M. Closed-loop state feedback in linear problems of terminal control. Itogi Nauki i Tekh. Sovrem. Mat. i ee Pril. Temat. Obz., 2023, vol. 224, pp. 43–53 (in Russian).
https://doi.org/10.36535/0233-6723-2023-224-43-53

12.   Dmitruk N., Findeisen R., Allgöwer F. Optimal measurement feedback control of finite-time continuous linear systems. IFAC Proceedings Volumes, 2008, vol. 41, no. 2, pp.  15339–15344.  https://doi.org/10.3182/20080706-5-KR-1001.02594

13.   Gabasov R., Dmitruk N.M., Kirillova F.M. Optimal control of multidimensional systems by inaccurate measurements of their output signals. Proc. Steklov Inst. Math. (Suppl.), 2004, suppl. 2, pp. S52–S75.

Cite this article as: N.M. Dmitruk. Optimal multiple-closed measurement feedback in the linear optimal control problem. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 2, рp. 108–124.