The paper considers reachable sets at a given time of linear control systems with integral constraints on control in the form of a ball in the space $L_p$ for $p>1$. The reachable sets are convex compact sets in the finite-dimensional Euclidean space $\mathbb R^n$. For $p=2$, it is known that the reachable set, under the controllability condition, is an ellipsoid in $\mathbb R^n$ whose boundary is a compact smooth manifold diffeomorphic to a sphere. In this paper we obtain sufficient conditions under which the boundary of the attainability set turns out to be a smooth manifold of dimension $n-1$ for all $1<p\leq 2$.
Keywords: control system, integral constraints, reachable set, nonlinear mapping, maximum principle
Received March 04, 2025
Revised March 27, 2025
Accepted April 1, 2025
Funding Agency: The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2025-1549).
Mikhail Ivanovich Gusev, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: gmi@imm.uran.ru
REFERENCES
1. Kalman R.E., Ho Y.C., Narendra K.S. Controllability of linear dynamical systems. Contr. Diff. Equ., 1963, vol. 1, no. 2, pp. 189–213.
2. Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under the conditions of uncertainty], Moscow, Nauka Publ., 1977, 392 p.
3. Kurzhanski A., Valui I. Ellipsoidal calculus for estimation and control. Boston, Birkhäuser, 1996, 321 p. ISBN-10: 0817636994 .
4. Kurzhanski A., Varaiya P. Dynamics and control of trajectory tubes: theory and computation. Boston, Birkhäuser, 2014, 445 p. https://doi.org/ 10.1007/978-3-319-10277-1
5. Chernous’ko F.L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov [Estimation of phase state of dynamic systems: the ellipsoid method]. Moscow, Nauka Publ., 1988, 319 p.
6. Polyak B.T. Сonvexity of the reachable set of nonlinear systems under $L_2$-bounded controls. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Math. Anal., 2004, vol. 11, no. 2, pp. 255–267.
7. Patsko V.S., Trubnikov G.I., Fedotov A.A. Reachable set of the Dubins car with an integral constraint on control. Dokl. Math., 2023, vol. 108, suppl. 1, pp. S34–S41. https://doi.org/ 10.1134/S106456242360080X
8. Rousse Р., Garoche P.L., Henrion D. Parabolic set simulation for reachability analysis of linear time invariant systems with integral quadratic constraint. European J. Control, 2021, vol. 58, pp. 152—167. https://doi.org/ 10.1016/j.ejcon.2020.08.002
9. Guseinov K.G., Ozer O., Akyar E., Ushakov V.N. The approximation of reachable sets of control systems with integral constraint on controls. Nonlinear Differ. Equ. Appl., 2007, vol. 14, no. 1–2, pp. 57–73. https://doi.org/ 10.1007/s00030-006-4036-6
10. Huseyin A., Huseyin N., Guseinov K.G. Continuity of $L_p$ balls and an application to input-output systems. Math. Notes, 2022, vol. 111, no. 1, pp. 58–70. https://doi.org/ 10.1134/S0001434622010072
11. Huseyin A., Huseyin N., Guseinov K.G. On the properties of the set of trajectories of nonlinear control systems with integral constraints on the control functions. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 3, pp. 274–284. https://doi.org/ 10.21538/0134-4889-2022-28-3-274-284
12. Ibragimov D.N., Podgornaya V.M. Construction of the time-optimal bounded control for linear discrete-time systems based on the method of superellipsoidal approximation. Autom. Remote Contr., 2023, vol. 84, no. 9, p. 1041–1064.
13. Gusev M.I. On some properties of reachable sets for nonlinear systems with control constraints in $L_p$. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 99–112 (in Russian). https://doi.org/ 10.21538/0134-4889-2024-30-3-99-112
14. Gusev M.I. Computing the reachable set boundary for an abstract control system: revisited. Ural Math. J., 2023, vol. 9, no 2, pp. 99–108. https://doi.org/10.15826/umj.2023.2.008
15. Leichtweiss K. Konvexe mengen. 1st edt., Berlin, Heidelberg, Springer, 1980, 332 p. ISBN-10: 3540090711 . Translated to Russian under the title Vypuklyye mnozhestva, Moscow, Nauka Publ., 1985, 335 p.
16. Milnor J., Wallace A. Differential topology. First steps. NY, Amsterdam, W.A.Benjamin, Ins., 1968, 140 p. ISBN 10: 0805394850 . Translated to Russian under the title Differentsial’naya topologiya. Nachal’nyy kurs, Moscow, Mir, 1972, 279 p.
17. Vodop’yanov S.K. Integrirovaniye po Lebegu [Lebesgue integration]. Novosibirsk: Novosib. Gos. Univer. Publ, 2014, 160 p.
Cite this article as: M.I. Gusev. On smoothness of the boundary of a reachable sets under integral control constraints. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol 31, no. 2, pp. 81–93.