A.A. Tolstonogov. Evolution inclusions with state-dependent maximal monotone operators ... P. 241-254

The existence of an absolutely continuous solution of a differential inclusion whose right-hand side contains a time- and state-dependent maximal monotone operator and a nonconvex perturbation is proved in a Hilbert space. The proofs are based on our comparison theorems for inclusions with maximal monotone operators and a fixed point theorem for multivalued mappings. This approach allows us to extend the class of inclusions with maximal monotone operators for which existence theorems are valid and, as a result, to obtain significant results of this kind.

Keywords: maximal monotone operator, $G$-convergence, comparison theorem

Received April 4, 2024

Revised May 15, 2024

Accepted May 20, 2024

Alexander Alexandrovich Tolstonogov, Corresponding member of RAS, Dr. Phys.-Math. Sci., Prof., Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033 Russia, e-mail: alexander.tolstonogov@gmail.com

REFERENCES

1.   Brе́zis H. Opе́rateurs maximaux monotones et semi-groupes de contractious dans les espaces de Hilbert, Amsterdam, North–Holland, 1973, 183 p. ISBN: 0720427053 .

2.   Vladimirov A.A. Nonstationary dissipative evolution equations in a Hilbert space. Nonlinear Anal.: Theory, Method & Appl., 1991, vol. 17, no. 6, pp. 499–518. doi: 10.1016/0362-546X(91)90061-5

3.   Selamnia F., Azzam-Laouir D., Monteiro Marques M.D.P. Evolution problems involving state-dependent maximal monotone operators. Appl. Anal., 2022, vol. 101, no. 1, pp. 297–313. doi: 10.1080/00036811.2020.1738401

4.   Amiour F., Sene M., Haddad T. Existence results for state-dependent maximal monotone differential inclusions: Fixed point approach. Numer. Funct. Anal. Optimiz., 2022, vol. 43, no. 7, pp. 838–859. doi: 10.1080/01630563.2022.2059675

5.   Tolstonogov A.A. Comparison theorems for evolution inclusions with maximal monotone operators. $L^2$-theory. Sbornik: Mathematics, 2023, vol. 214, no. 6, pp. 853–877. doi: 10.4213/sm9736e

6.   Fan K. Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad Sci. USA., 1952, vol. 38, pp. 121–126.

7.   Le B.K. Well-posedness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions. Optimization, 2020, vol. 69, no. 6, pp. 1187–1217. doi: 10.1080/02331934.2019.1686504

8.   Le B.K. On a class of Lur’e dynamical systems with state-dependent set-valued feedback. Set-valued Variat. Anal., 2020, vol. 28, no. 1, pp. 537–557. doi: 10.1007/s11228-020-00530-8

9.   Attouch H. Families d’opе́rateurs maximax monotone et measurabilitе́. Ann. Math. Pura Appl., 1979, vol. 120, no. 4, pp. 35–111.

10.   Attouch H. Variational convergence for functions and operators, Boston–London–Melbourne, Pitman Advanced Publ. Prog., 1984, 423 p. ISBN-10: 0273085832 .

11.   Shui-Hung Hou. On property (Q) and other semicontinuity properties of multifunctions. Pacific J. Math., 1982, vol. 103, no. 2, pp. 39–56.

12.   Denkowski Z., Migо́rski S., Papageorgiou N.S. An introduction to nonlinear analysis: theory. NY, Kluwer Acad., Plenum Publ., 2003, 690 p. doi: 10.1007/978-1-4419-9158-4

13.   Kunze M., Monteiro Marques M.D.P. BV solutions to evolution problems with time-dependent domains. Set-valued Variat. Anal., 1997, vol. 5, pp. 57–72. doi: 10.1023/A:1008621327851

14.   Tolstonogov A.A. Upper semicontinuous convex-valued selectors of a Nemytskii operator with nonconvex values and evolution inclusions with maximal monotone operators. J. Math. Anal. Appl., 2023, vol. 526, no. 1, art. no. 127197. doi: 10.1016/j.jmaa.2023.127197

15.   Moreau J.J. Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equat., 1977, vol. 26, no. 3, pp. 347–374. doi: 10.1016/0022-0396(77)90085-7

Cite this article as: A.A. Tolstonogov. Evolution inclusions with state-dependent maximal monotone operators. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 241–254.