M.I. Gusev. On some properties of reachable sets for nonlinear systems with control constraints in $L_p$ ... P. 99-112

The paper considers reachable sets at a given time for control-affine systems with integral control constraints in the space $L_p$ for $p>1$. The goal of the paper is to characterize controls leading to the boundary of reachable sets as solutions to extremal problems and to study the necessary optimality conditions in the form of the Pontryagin maximum principle for these controls. A reachable set is interpreted here as the image of the set of admissible controls under a nonlinear mapping defined by a dynamical system. We also study the application of the maximum principle to describe projections of a reachable set onto a subspace and its sections by a hyperplane. The dependence of a reachable set on the control resource is studied. The results obtained are illustrated using the example of linear systems. It is shown that in this case the optimality conditions for boundary controls are necessary and sufficient.

Keywords: control system, integral constraints, reachable set, nonlinear mapping, maximum principle

Received June 1, 2024

Revised June 13, 2024

Accepted June 17, 2024

Funding Agency: The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2024-1377).

Mikhail Ivanovich Gusev, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: gmii@imm.uran.ru

REFERENCES

1.   Kalman  R.E., Ho Y.C., Narendra K.S. Controllability of linear dynamical systems. Contributions to differential equations, 1963, vol. 1, no. 2, pp. 189–213.

2.   Krasovskii N.N. Teoriya upravleniya dvizheniem [Motion control theory]. Moscow, Nauka Publ., 1968, 475 p.

3.   Krasovskii N.N. Igrovye zadachi o vstreche dvizhenii [Game problems on the encounter of motions]. Moscow, Nauka Publ., 1970, 420 p.

4.   Al’brekht E.G. The coming together of quasilinear objects in the regular case. Differencial’nye Uravneniya, 1971, vol. 7, no. 7, pp. 1171–1178 (in Russian).

5.   Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under the conditions of uncertainty]. Moscow, Nauka Publ., 1977, 392 p.

6.   Polyak B.T. Сonvexity of the reachable set of nonlinear systems under $L_2$ bounded controls. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Math. Anal., 2004, vol. 11, no. 2–3, pp. 255–267.

7.   Gusev M.I., Zykov I.V. On extremal properties of boundary points of reachable sets for a system with integrally constrained control. IFAC-PapersOnLine, 2017, vol. 50, in. 1, pp. 4082–4087. doi: 10.1016/j.ifacol.2017.08.792

8.   Patsko V.S., Trubnikov G.I., Fedotov A.A. Reachable set of the Dubins car with an integral constraint on control. Dokl. Math., 2023, vol. 108, suppl. 1, pp. S34–S41. doi: 10.1134/S106456242360080X

9.   Rousse Р., Garoche P.L., Henrion D. Parabolic set simulation for reachability analysis of linear time-invariant systems with integral quadratic constraint. European J. Control., 2021, vol. 58, pp. 152–167. doi: 10.1016/j.ejcon.2020.08.002

10.   Guseinov K.G., Ozer O., Akyar E., Ushakov V.N. The approximation of reachable sets of control systems with integral constraint on controls. Nonlinear Differ. Equ. Appl., 2007, vol. 14, no. 1–2, pp. 57–73. doi: 10.1007/s00030-006-4036-6

11.   Huseyin N., Huseyin A., Guseinov K.G. Approximations of the set of trajectories and integral funnel of the non-linear control systems with $L_p$ norm constraints on the control functions. IMA J. Math. Contr. Inform., 2022, vol. 39, pp. 1213–1231. doi: 10.1093/imamci/dnac028

12.   Guseinov K.G., Nazlipinar A.S. On the continuity property of $L_p$ balls and an application. J. Math. Anal. Appl., 2007, vol. 335, pp. 1347–1359. doi: 10.1016/j.jmaa.2007.01.109

13.   Dmitruk A.V., Milyutin A.A., Osmolovskii N.P. Lyusternik’s theorem and the theory of extrema. Russian Math. Surv., 1980, vol. 35, iss. 6, pp. 11–51. doi: 10.1070/RM1980v035n06ABEH001973

14.   Huseyin  N., Huseyin A., Guseinov Kh.G. On the robustness property of a control system described by an Urysohn type integral equation. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 263–270. doi: 10.21538/0134-4889-2021-27-3-263-270

15.   Gusev M.I. Computing the reachable set boundary for an abstract control system: revisited. Ural Math. J., 2023, vol. 9, no. 2, pp. 99–108. doi: 10.15826/umj.2023.2.008

16.   Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathematical theory of optimal processes. NY, London, Sydney, John Wiley and Sons, Inc., 1962, 360 p. ISBN: 978-0470693810 . Original Russian text published in Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F. Matematicheskaya teoriya optimal’nykh protsessov, Moscow, Phys. Math. Liter. Publ., 1961, 391 p.

17.   Patsko V.S., Pyatko S.G., Fedotov A.A. Three-dimensional reachability set for a nonlinear control system. J. Comp. Syst. Sci. Intern., 2003, vol. 42, no. 3, pp. 320–328.

18.   Xiao Q., Li L., Zhang J., Xu M. Two-dimensional reachability of low-thrust spacecraft. IEEE Transact. Aerospace Electr. Syst., 2024, vol. 60, no. 3, pp. 3698–3706. doi: 10.1109/TAES.2024.3356986

19.   Rockafellar R.T. Convex analysis, Princeton, Princeton Univ. Press, 1970, 472 p. doi: 10.1515/9781400873173 . Translated to Russian under the title Vypuklyi analiz, Moscow, Mir Publ., 1973, 472 p.

Cite this article as: M.I. Gusev. On some properties of reachable sets for nonlinear systems with control constraints in $L_p$. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 99–112.