S.M. Aseev. An optimal control problem with a relaxed state constraint ... P. 14-29

We explore an optimal control problem in the context of a specified open set representing “undesirable” system states. This problem statement is closely linked to the standard optimal control problem with a state constraint and can be viewed as a relaxation of the latter. The interrelation between these problems is examined. The recently derived necessary first-order optimality conditions for the discussed problem are presented. Additionally, an illustrative example is given.

Keywords: optimal control, differential inclusion, Pontryagin’s maximum principle, refined Euler–Lagrange inclusion, state constraint, discontinuous integrand, risk zone

Received July 8, 2024

Revised July 26, 2024

Accepted July 29, 2024

Sergey Mironovich Aseev, Dr. Phys.-Math. Sci., Corresponding Member of RAS, Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991 Russia, e-mail: aseev@mi-ras.ru

REFERENCES

1.   Rockafellar R. Clarke’s tangent cones and the boundaries of closed sets. Nonlinear Anal.: Theory, Methods & Appl., 1979, vol. 3, no. 1, pp. 145–154. doi: 10.1016/0362-546X(79)90044-0

2.   Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathematical theory of optimal processes. NY, London, Sydney, John Wiley and Sons, Inc., 1962, 360 p. ISBN: 978-0470693810 . Original Russian text published in Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F. Matematicheskaya teoriya optimal’nykh protsessov, Moscow, Phys. Math. Liter. Publ., 1961, 391 p.

3.   Ioffe A.D., Tikhomirov V.M. Theory of extremal problems. NY, Elsevier Sci. Publ., 2009, 459 p. ISBN: 9780080875279 . Original Russian text published in Ioffe A.D., Tikhomirov V.M. Teoriya ekstremal’nykh zadach, Moscow, Nauka Publ., 1974, 480 p.

4.   Pshenichnyi B.N., Ochilov S. On the problem of optimal passage through a given domain. Kibern. Vychisl. Tekh., 1993, vol. 99, pp. 3–8 (in Russian).

5.   Doyen L. Saint-Pierre P. Scale of viability and minimal time of crisis. Set-Valued Anal., 1997, vol. 5, no. 3, pp. 227–246.

6.   Aubin J.P. Viability Theory, Basel, Birkhäuser, 1991, 543 p.

7.   Bayen T., Rapaport A. About Moreau — Yosida regularization of the minimal time crisis problem. J. Convex Anal., 2016, vol. 23, no. 1, pp. 263–290.

8.   Boumaza K., Bayen T., Rapaport A. Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization. ESAIM : Contr., Optim. Calc. Variat., 2021, vol. 27, art. 105. doi: 10.1051/cocv/2021102

9.   Aseev S.M., Smirnov, A.I. Necessary first-order conditions for optimal crossing of a given region. Comput. Math. Model., 2007, vol. 18, no. 4, pp. 397–419. doi: 10.1007/s10598-007-0034-8

10.   Smirnov A.I. Necessary optimality conditions for a class of optimal control problems with discontinuous integrand. Proc. Steklov Inst. Math., 2008, vol. 262, pp. 213–230. doi: 10.1134/S0081543808030176

11.   Aseev S.M. Weakening state constraints in optimal control problems. Proc. Steklov Inst. Math., 2023, vol. 321, suppl. 1, pp. S24–S36. doi: 10.1134/S0081543823020025

12.   Cesari L. Optimization — theory and applications. Problems with ordinary differential equations. NY, Springer-Verlag, 1983. doi: 10.1007/978-1-4613-8165-5

13.   Filippov A.F. Differential equations with discontinuous right-hand sides. Dordrecht, Springer, 1988, 304 p. doi: 10.1007/978-94-015-7793-9 . Original Russian text published in Filippov A.F. Differentsial’nyye uravneniya s razryvnoy pravoy chast’yu, Moscow, Nauka Publ., Glav. red. fiz.-mat. lit., 1985, 225 p.

14.   Clarke F. Functional analysis, calculus of variations and optimal control. Ser. Graduate texts in mathematics, (GTM, vol. 264), London, Springer-Verlag, 2013, 591 p. doi: 10.1007/978-1-4471-4820-3

15.   Mordukhovich B.Sh. Optimal control of difference, differential, and differential–difference inclusions. J. Math. Sci., 2000, vol. 100, no. 6, pp. 2613–2632. doi: 10.1007/BF02672708

16.   Aseev S.M. Refined Euler-Lagrange inclusion for an optimal control problem with discontinuous integrand. Proc. Steklov Inst. Math., 2021, vol. 315, suppl. 1, pp. S27–S55. doi: 10.1134/S0081543821050047

17.   Aseev S.M. Methods of regularization in nonsmooth problems of dynamic optimization. J. Math. Sci., 1999, vol. 94, iss. 3, pp. 1366–1393. doi: 10.1007/BF02365018

18.   Arutyunov A.V., Aseev S.M. Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints. SIAM J. Contr. Optimiz., 1997, vol. 35, no. 3, pp. 930–952. doi: 10.1137/S036301299426996X

19.   Vinter R.B. Optimal Control. Boston, Birkhäuser, 2000, 507 p. ISBN: 081764075 .

20.   Arutyunov A.V. Optimality conditions: abnormal and degenerate problems, Dordrecht, Springer, 2000, 300 p. doi: 10.1007/978-94-015-9438-7 . Original Russian text was published in Arutyunov A.V. Usloviya ekstremuma. Anormal’nyye i vyrozhdennyye zadachi, Moscow, Faktorial Publ., 1997, 254 p.

21.   Arutyunov A.V. Perturbations of extremal problems with constraints and necessary optimality conditions. J. Sov. Math., 1991, vol. 54, iss. 6, pp. 1342–1400. doi: 10.1007/BF01373649

22.   Arutyunov A.V., Karamzin D.Yu., Pereira F.L. The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited. J. Optim. Theory Appl., 2011, vol. 149, no. 3, pp. 474–493. doi: 10.1007/s10957-011-9807-5

23.   Fontes F.A.C.C., Frankowska, H. Normality and nondegeneracy for optimal control problems with state constraints. J. Optim. Theory Appl., 2015, vol. 166, no. 1, pp. 115–136. doi: 10.1007/s10957-015-0704-1

Cite this article as: S.M. Aseev. An optimal control problem with a relaxed state constraint. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 14–29.