S.A. Reshmin, M.T. Bektybaeva. Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint ... P. 152-163

The paper is devoted to trajectory optimization for an inertial object moving in a plane with thrust bounded in absolute value in the presence of external forces. The aim is to maximize the longitudinal terminal velocity with the state constraint satisfied at each time to avoid a lateral collision with an obstacle. The linear tangent law is used as the basis for an algorithm that controls the direction of the thrust. Conditions for the existence of a solution are studied. Constraints on the initial lateral velocity and the time of the motion of the object are obtained. Since the linear tangent law violates the constraint for some motion times, a modified control law is proposed. A transcendental equation is obtained to find a critical value of time above which an undesired collision occurs. The corresponding conjecture is formulated, which allows us to eliminate the ambiguity that arises during the solution process. A method for solving the problem is presented and confirmed by numerical calculations.

Keywords: trajectory optimization, state constraint, velocity maximization, linear tangent law

Received March 3, 2024

Revised March 21, 2024

Accepted March 25, 2024

Funding Agency: This work was performed at the Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences and was supported by the Russian Science Foundation (project no. 23-11-00128, https://rscf.ru/project/23-11-00128/).

Sergey Aleksandrovich Reshmin, Dr. Phys.-Math. Sci., Corresponding Member of RAS, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 119526 Russia, e-mail: reshmin@ipmnet.ru

Madina Timurovna Bektybaeva, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 119526 Russia; doctoral student, the Department of Mechanics and Control Processes, RUDN University, Moscow, 117198 Russia, e-mail: madi8991@mail.ru

REFERENCES

1.   Perkins F.M. Derivation of linear-tangent steering laws. Air Force Report No. SSD-TR66-211. Nov. 1966. doi: 10.21236/ad0643209

2.   Bryson A.E., Ho Y.-C. Applied optimal control: optimization, estimation, and control. Waltham, Mass.: Blaisdell Pub. Co., 1969, 481 p. Translated to Russian under the title Prikladnaya teoriya optimal’nogo upravleniya, Moscow, Mir Publ., 1972, 544 p.

3.   Okhotsimsky D.E., Eneev T.M. Some variational problems related to the launch of the artificial satellite. Uspekhi Fiz. Nauk, 1957, vol. 63, no. 1, pp. 5–32 (in Russian). doi: 10.3367/UFNr.0063.195709b.0005

4.   Afanas’ev V.N., Kolmanovskii V.B., Nosov V.R. Mathematical theory of control systems design. Transl. from 1st Russian ed. Dordrecht, Springer, 1996, 672 p. doi: 10.1007/978-94-017-2203-2 . Original Russian text (3rd ed.) Published in Afanas’ev V.N., Kolmanovskii V.B., Nosov V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Moscow, Vysshaya shkola, 2003, 614 p. ISBN: 5-06-004162-X .

5.   Isaev V.K. L.S. Pontryagins’s maximum principle and optimal programming of rocket thrust. Avtomat. i Telemekh., 1961, vol. 22, no. 8, pp. 986–1001 (in Russian).

6.   Reshmin S.A. Optimal traction control in high-speed maneuvering under dry friction conditions. Mechanics of Solids, 2023, vol. 58, no. 7, pp. 2574–2585. doi: 10.3103/S0025654423070191

7.   Reshmin S.A., Bektybaeva M.T. Efficient control of the direction of thrust during high-speed maneuver in the plane. Vestnik Ross. Univ. Druzhby Narodov, Ser. Ingener. Issled., 2023, vol. 23. no. 3, pp. 233–240 (in Russian). doi: 10.22363/2312-8143-2023-24-3-233-240

8.   Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathematical theory of optimal processes. NY, Gordon & Breach, 1986, 360 p. Original Russian text Published in Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., Matematicheskaya teoriya optimal’nykh protsessov, Moscow, Nauka Publ., 1983, 392 p.

9.   Reshmin S.A., Bektybaeva M.T. Accounting for phase limitations during intense acceleration of a mobile robot and its motion in drift mode. Dokl. Math., 2024, vol. 109, no. 1, pp. 38–46. doi: 10.1134/S1064562424701709

10.   Gordan A.L. Centaur D-1A guidance/software system. In: Proc. Conf. “Annual Rocky Mountain Guidance and Control Conference”, Keystone, Colorado, 1984. 17 p.

11.   Kim K.S., Park J.W., Tahk M.J., Choi H.L. A PEG-based ascending guidance algorithm for ramjet-powered vehicles. In: Proc. 28th International Congress of the Aeronautical Sciences, 2012 (ISAC 2012). 7 p.

12.   Barseghyan V.R. Problems of boundary control and optimal control of string vibrations with multipoint intermediate conditions on the state functions. Proc. Steklov Inst. Math. (Suppl.), 2022, vol. 319, no. 1, pp. S66–S79. doi: 10.1134/S0081543822060074

13.   Aseev S.M., Kryazhimskii A.V. On a class of optimal control problems arising in mathematical economics. Proc. Steklov Inst. Math., 2008, vol. 262, pp. 10–25. doi: 10.1134/S0081543808030036

14.   Aseev S.M., Kryazhimskii A.V., Tarasyev A.M. The Pontryagin maximum principle and transversality conditions for an optimal control problem with infinite time interval. Proc. Steklov Inst. Math., 2001, vol. 233, pp. 64–80.

15.   Roitenberg Ya.N. Avtomaticheskoe upravlenie [Automatic Control]. Moscow, Nauka, 1971, 396 p.

Cite this article as: S.A. Reshmin, M.T. Bektybaeva. Control of acceleration of a dynamic object by the modified linear tangent law in the presence of a state constraint. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 2, pp. 152–163. Proceedings of the Steklov Institute of Mathematics, 2024, Vol. 325, Suppl. 1, pp. S168-S178.