In the Hardy spaces $H_{q,\rho}$ ($1\le q\le\infty$, $0<\rho\le1$), exact inequalities are found between the best simultaneous approximation of a function and the averaged moduli of smoothness of the angular boundary values of the $r$th derivatives. Some applications of these inequalities to the problem of finding the best upper bounds of the best simultaneous approximations of some classes of functions defined by moduli of smoothness and belonging to the Hardy space $H_{q,\rho}$ are given.
Keywords: best simultaneous approximation, Hardy space, upper bound, modulus of smoothness, majorant
Received July 4, 2023
Revised September 14, 2023
Accepted September 18, 2023
Mirgand Shabozovich Shabozov, Dr. Phys.-Math. Sci., Prof., Tajik National University; A.Juraev Institute of Mathematics of the NAS of Tajikistan, Dushanbe, Tajikistan, e-mail: shabozov@mail.ru
REFERENCES
1. Babenko K.I. Best approximations to a class of analytic functions. Izv. Akad. Nauk SSSR Ser. Mat., 1958, vol. 22, no. 5, pp. 631–640 (in Russian).
2. Taikov L.V. On the best approximation in the mean of certain classes of analytic functions. Math. Notes Acad. Sci. of the USSR, 1967, vol. 1, no. 2, pp. 104–109. doi: 10.1007/BF01268058
3. Taikov L.V. Diameters of certain classes of analytic functions. Math. Notes Acad. Sci. of the USSR, 1977, vol. 22, no. 2, pp. 650–656. doi: 10.1007/BF01780976
4. Ainulloev N., Taikov L.V. Best approximation in the sense of Kolmogorov of classes of functions analytic in the unit disc. Math. Notes, 1986, vol. 40, no. 3, pp. 699–705. doi: 10.1007/BF01142473
5. Vakarchuk S.B. Best linear methods of approximation and widths of classes of analytic functions in a disk. Math. Notes, 1995, vol. 57, no. 1, pp. 21–27. doi: 10.1007/BF02309390.
6. Vakarchuk S.B., Zabutnaya V.I. Best linear approximation methods for functions of Taikov classes in the Hardy spaces $H_{q,\rho},\,q\ge1,\,0<\rho\le1$. Math. Notes, 2009, vol. 85, no. 3, pp. 323–329. doi: 10.1134/S000143460903002X
7. Shabozov M.Sh., Shabozov O.Sh. Widths of some classes of analytic functions in the Hardy space $H_2$ . Math. Notes, 2000, vol. 68, no. 5, pp. 675–679. doi: 10.1023/A:1026692112651
8. Shabozov M.Sh., Yusupov G.A. Best approximation and widths of some classes of analytic functions. Dokl. Math., 2002, vol. 65, no. 1, pp. 111–113.
9. Shabozov M.Sh., Usupov G.A., Zargarov J.J. On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces. Tr. Inst. Mat. Mekh. UrO RAN, 2021, vol. 27, no. 4, pp. 240–256 (in Russian).
10. Privalov I.I. Granichnye svoistva analiticheskikh funktsii [Boundary properties of analytic functions]. Moscow: Gostekhizdat Publ., 1950, 336 p.
11. Smirnov V.I., Lebedev N.A. Functions of a complex variable. Constructive theory. London: Iliffe Books Ltd., 1968, 488 p. ISBN: 9780262190466 . Original Russian text published in Smirnov V.I., Lebedev N.A. Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Moscow; Leningrad: Nauka Publ., 1964, 440 p.
12. Vakarchuk S.B., Vakarchuk M.B. Kolmogorov type inequalities for analytic functions of one and two complex variables and their application to approximation theory. Ukr. Math. Journal, 2011, vol. 63, no. 12, pp. 1579–1601.
13. Zygmund A. Trigonometric series. Vol. I. Cambridge: Cambridge University Press, 1959, 383 p. Translated to Russian under the title Trigonometricheskie ryady. I. Moscow: Mir Publ., 1965, vol. 1, 616 p.
Cite this article as: M.Sh. Shabozov. On the best simultaneous approximation of functions in the Hardy space. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 4, pp. 283–291.