The paper is concerned with sharp Carlson type inequalities of the form
$$\|w(\cdot) x(\cdot)\|_{L_q(T)}\le K\|w_0(\cdot) x(\cdot)\|_{L_p(T)}^{\gamma}\max_{1\le j\le n}\|w_j(\cdot) x(\cdot)\|_{L_r(T)}^{1-\gamma},$$
where $T$ is a cone in $\mathbb R^d$ and the weight functions $w_j(\cdot)$, $j=1,\ldots,n$, are homogeneous with some symmetry property.
Keywords: Carlson type inequalities, sharp constants
Received June 15, 2023
Revised September 20, 2023
Accepted September 25, 2023
Konstantin Yur’evich Osipenko, Dr. Phys.-Math. Sci., Prof., Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of general problems of control, Moscow, 119991, Russia, e-mail: mmmf@mech.math.msu.su; Kharkevich Institute for Information Transmission Problems, Moscow, 127051 Russia, e-mail: director@iitp.ru
REFERENCES
1. Carlson F. Une inégalité. Ark. Mat. Astron. Fys., 1934, vol. 25B, pp. 1–5.
2. Levin V. I. Exact constants in Carlson type inequalities. Dokl. Akad. Nauk SSSR, 1948, vol. 59, pp. 635–638 (in Russian).
3. Andrianov F. I. Multidimensional analogs of Carlson inequalities and its generalizations. Izvestiya VUZ. Mat., 1967, no. 1, pp. 3–7 (in Russian).
4. Arestov V. V. Approximation of linear operators and related extremal problems. Proc. Steklov Inst. Math., 1977, vol. 138, pp. 31–44.
5. Barza S., Burenkov V., Pečarić J., Persson L.-E. Sharp multidimentional multiplicative inequalities for weighted Lp spaces with homogeneous weights. Math. Ineq. Appl., 1998, vol. 1, no. 1, pp. 53–67. doi: 10.7153/mia-01-04
6. Luo M.-J., Raina R.K. A new extension of Carlson’s inequality. Math. Ineq. Appl., 2016, vol. 19, no. 2, pp. 417–424. doi: 10.7153/mia-19-33
7. Osipenko K.Yu. Optimal recovery of operators and multidimensional Carlson type inequalities. J. Complexity, 2016, vol. 32, no. 1, pp. 53–73. doi: 10.1016/j.jco.2015.07.004
8. Osipenko K.Yu. Inequalities for derivatives with the Fourier transform. Appl. Comp. Harm. Anal., 2021, vol. 53, pp. 132–150. doi: 10.1016/j.acha.2021.02.001
9. Osipenko K.Yu. Optimal recovery and generalized Carlson inequality for weights with symmetry properties. 2023. 32 p. Available at: https://arxiv.org/pdf/2303.10355.pdf . doi: 10.48550/arXiv.2303.10355
10. Osipenko K.Yu. Vypuklyi analiz. [Convex analysis], Moscow, URSS, 2022, 144 p. ISBN: 978-5-9710-9724-2 .
Cite this article as: K.Yu. Osipenko. Sharp Carlson type inequalities with many weights. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 4, pp. 229–240; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2023, Vol. 323, Suppl. 1, pp. S211–S221.