Let $\mathfrak F$ be a formation, and let $G$ be a finite group. A subgroup $H$ of $G$ is $\mathrm{K}\mathfrak F$-subnormal (submodular) in $G$ if there is a subgroup chain $H=H_0\le \ H_1 \le \ \ldots \le \ H_{n-1}\le \ H_n=G$ such that for every $i$ either $H_{i}$ is normal in $H_{i+1}$ or $H_{i+1}^\mathfrak{F} \le H_i$ ($H_i$ is a modular subgroup of $H_{i+1}$, respectively). We prove that in a group, a primary subgroup is submodular if and only if it is $\mathrm{K}\mathfrak U_1$-subnormal. Here $\mathfrak U_1$ is a formation of all supersolvable groups with square-free orders of elements. Moreover, for a solvable subgroup-closed formation $\mathfrak{F}$, every solvable $\mathrm{K}\mathfrak{F}$-subnormal subgroup of a group $G$ is contained in the solvable radical of $G$. We also obtain a series of applications of these results to the investigation of groups factorized by $\mathrm{K}\mathfrak{F}$-subnormal and submodular subgroups.
Keywords: finite group, subnormal subgroup, submodular subgroup
Received August 13, 2023
Revised October 6, 2023
Accepted October 9, 2023
Funding Agency: This work was supported by the Belarusian Republican Foundation for Fundamental Research (project no. Φ23PHΦ-237).
Victor Stepanovich Monakhov, Dr. Phys.-Math. Sci., Prof., Francisk Skorina Gomel State University, Gomel, 246028 Belarus, e-mail: victor.monakhov@gmail.com
Irina Leonidovna Sokhor, Cand. Sci. (Phys.-Math.), Francisk Skorina Gomel State University, Gomel, 246028 Belarus, e-mail: irina.sokhor@gmail.com
REFERENCES
1. Kegel O.H. Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten. Arch. Math., 1978, vol. 30, p. 225–228.
2. Hawkes T. On formation subgroups of a finite soluble group. J. Lond. Math. Soc., 1969, vol. s1-44, no. 1, pp. 243–250. doi: 10.1112/jlms/s1-44.1.243
3. Shemetkov L.A. Formatsii konechnykh grupp [Formations of finite groups]. Мoscow: Nauka Publ., 1978, 272 p.
4. Doerk K., Hawkes T. Finite soluble groups. Berlin; NY: Walter de Gruyter, 1992, 891 p. doi: 10.1515/9783110870138
5. Kamornikov S.F., Selkin M.V. Podgruppovye funktory i klassy konechnykh grupp [Subgroup functors and classes of finite groups]. Minsk: Belarusskaya Nauka Publ., 2003, 254 p.
6. Ballester-Bolinches A., Ezquerro L.M. Classes of finite groups. Dordrecht: Springer, 2006, 381 p.
7. Schmidt R. Subgroup lattices of groups. Berlin; NY: De Gruyter, 1994. 572 p.
8. Zimmermann I. Submodular subgroups in finite groups. Math. Z., 1989, vol. 202, pp. 545–557. doi: 10.1007/BF01221589
9. Vasil’ev V.A. Finite groups with submodular Sylow subgroups. Sib. Math. J., 2015, vol. 56, no. 6, pp. 1019–1027. doi: 10.1134/S0037446615060063
10. Monakhov V.S., Sokhor I.L. Finite groups with submodular primary subgroups. Arch. Math. 2023. Vol. 121. P. 1–10. doi: 10.1007/s00013-023-01872-z
11. Murashka V.I. Classes of finite groups with generalized subnormal cyclic primary subgroups. Sib. Math. J., 2014, vol. 55, no. 6, pp. 1105–1115. doi: 10.1134/S0037446614060135
12. Vasil’ev A.F., Vasil’eva T.I., Tyutyanov V.N. On the finite groups of supersoluble type. Sib. Math. J., 2010, vol. 51, no. 6, pp. 1004–1012. doi: 10.1007/s11202-010-0099-z
13. Monakhov V.S. Finite groups with abnormal and $\mathfrak{U}$-subnormal subgroups. Sib. Math. J., 2016, vol. 57, no. 2, pp. 352–363. doi: 10.1134/S0037446616020178
14. Monakhov V.S. Three formations over $\mathfrak{U}$. Math. Notes, 2021, vol. 110, no. 3, pp. 339–346. doi: 10.1134/S0001434621090042
15. Vasil’ev A.F., Vasil’eva T.I., Tyutyanov V.N. On $\mathrm K$-$\mathbb P$-Subnormal subgroups of finite groups. Math. Notes, 2014, vol. 95, no. 4, pp. 471–480. doi: 10.1134/S0001434614030195
16. Monakhov V.S., Sokhor I.L. Finite groups with formational subnormal primary subgroups of bounded exponent. Sib. Elektron. Mat. Izv., 2023, vol. 20, no. 2, pp. 785–796. doi: 10.33048/semi.2023.20.046
17. Huppert B. Endliche Gruppen. I. Berlin; Heidelberg; NY: Springer, 1967, 793 p.
18. Monakhov V.S. Finite factorizable groups with $\mathbb P$-subnormal v-supersolvable and sh-supersolvable factors. Math. Notes, 2022, vol. 111, no. 3, pp. 407–413. doi: 10.1134/S0001434622030087
19. Vasil’ev V.A. On the influence of submodular subgroups on the structure of finite groups. Vestn. Vitebsk State Univ., 2016, no. 2 (91), pp. 17–21.
20. Vasil’ev A.F. New properties of finite dinilpotent groups. Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk, 2004, no. 2, pp. 29–33.
Cite this article as: V.S. Monakhov, I.L. Sokhor. On submodularity and $\mathrm{K}\mathfrak F$-subnormality in finite groups. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 4, pp. 169–180; Proceedings of the Steklov Institute of Mathematics (Suppl.1), 2023, Vol. 323, Suppl. 1, pp. S168–S178.