Using R. Wilson's recent results, we prove the existence of triples $(\mathfrak{X},G,H)$ such that $\mathfrak{X}$ is a complete (i.e. closed under taking subgroups, homomorphic images, and extensions) class of finite groups, $G$ is a finite simple group, $H$ is an $\mathfrak{X}$-maximal subgroup of $G$, and $H$ is not pronormal in $G$. This disproves a conjecture stated earlier by the second author and W. Guo.
Keywords: complete class of groups, relatively maximal subgroup, pronormal subgroup, finite simple group
Received August 28, 2023
Revised September 14, 2023
Accepted September 18, 2023
Funding Agency: The research of B. Li was supported by National Natural Science Foundation of China, (NSFC), grant no.12371021. The research of D.O.Revin was carried out within the State Contract of the Sobolev Institute of Mathematics (FWNF-2022-0002).
Baojun Li, PhD, Prof., School of Sciences, Nantong University, Nantong, 226019 P.R. China, e-mail: libj@ntu.edu.cn
Danila Olegovich Revin, Dr. Phys.-Math. Sci., Prof., Sobolev Institute of Mathematics of the Siberia Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia; Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: revin@math.nsc.ru
REFERENCES
1. Hall P. Phillip Hall’s lecture notes on group theory — Part 6. Cambridge: University of Cambridge, 1951–1967. Available at: http://omeka.wustl.edu/omeka/items/show/10788 .
2. de Giovanni F., Trombetti M. Pronormality in group theory. Adv. Group Theory Appl., 2020, vol. 9, pp. 123–149. doi: 10.32037/agta-2020-00
3. Kondrat’ev A.S., Maslova N.V., Revin D.O. On the pronormality of subgroups of odd index in finite simple groups. In: Groups St Andrews 2017 in Birmingham, eds. C.M. Campbell, M.R. Quick, C.W. Parker, E. F. Robertson, C.M. Roney-Dougal, London Mathematical Society Lecture Note Series, vol. 455, Cambridge: Cambridge Univ. Press., 2019, pp. 406–418. doi: 10.1017/9781108692397.016
4. Guo W., Revin D.O. Pronormality and submaximal $\mathfrak{X}$-subgroups in finite groups. Comm. Math. Stat., 2018, vol. 6, no. 3, pp. 289–317. doi: 10.1007/s40304-018-0154-9
5. Romalis G.M., Sesekin N.F. Metahamiltonian groups, I–III. Ural. Gos. Univ. Mat. Zap., 1966, vol. 5, no. 2, pp. 45–49; vol. 6, no. 5, pp. 52–58; 1969/70, vol. 7, no. 3, pp. 195–199 (in Russian).
6. De Falco M., de Giovanni F., Musella C. Metahamiltonian groups and related topics. Int. J. Group Theory., 2013, vol. 2, no. 1, pp. 117–129.
7. Brescia M., Ferrara M., Trombetti M. The structure of metahamiltonian groups. Jpn. J. Math., 2023, vol. 18, no. 1, pp. 1–65. doi: 10.1007/s11537-023-2216-3
8. Makhnev A.A. Finite meta-Hamiltonian groups. Ural. Gos. Univ. Mat. Zap., 1976, vol. 10, no. 1, pp. 60–75 (in Russian).
9. Brescia M., Ferrara M., Trombetti M. Groups whose subgroups are either abelian or pronormal. Kyoto J. Math., 2023, vol. 63, no. 3, pp. 471–500. doi: 10.1215/21562261-10607307
10. Brescia M., Trombetti M. Locally finite simple groups whose non-Abelian subgroups are pronormal. Comm. Algebra, 2023, vol. 51, no. 8, pp. 3346–3353. doi: 10.1080/00927872.2023.2182604
11. Ferrara M., Trombetti M. Groups with many pronormal subgroups. Bull. Austral. Math. Soc., 2022, vol. 105, no. 1, p. 75–86. doi:10.1017/S0004972721000277
12. Ferrara M., Trombetti M. Locally finite simple groups whose nonnilpotent subgroups are pronormal. Bull. Austral. Math. Soc.: publ. online, 2023, pp. 1–10. doi: 10.1017/S0004972723000576
13. Wielandt H. Zusammengesetzte Gruppen endlicher Ordnung. Lecture notes Math. Inst. Univ. Tübingen (1963/64). In book: Helmut Wielandt. Mathematische Werke/Mathematical Works, vol. 1 (Group theory), Berlin: de Gruyter, 1994, pp. 607–655.
14. Guo W., Revin D.O. Maximal and submaximal $\mathfrak{X}$-subgroups. Algebra and Logic, 2018, vol. 57, no. 1, pp. 9–28. doi: 10.1007/s10469-018-9475-8
15. Guo W., Revin D.O. Classification and properties of the $\pi$-submaximal subgroups in minimal nonsolvable groups. Bull. Math. Sci., 2018, vol. 8, no. 2, pp. 325–351. doi: 10.1007/s40304-018-0154-9
16. Revin D.O. Submaximal soluble subgroups of odd index in alternating groups. Siberian Math. J., 2021, vol. 62, no. 2, pp. 313–323. doi: 10.1134/S0037446621020105
17. Vdovin E.P., Revin D.O. Pronormality of Hall subgroups in finite simple groups. Siberian Math. J., 2012, vol. 53, no. 3, pp. 419–430. doi: 10.1134/S0037446612020231
18. Aschbacher M. The subgroup structure of finite groups. Finite simple groups: thirty years of the Atlas and beyond. Contemp. Math. AMS, 2017, vol. 694, pp. 111–121.
19. Wilson R.A. A negative answer to a question of Aschbacher. Albanian J. Math., 2018, vol. 12, no. 1, pp. 24–31. doi: 10.51286/albjm/1544605486
20. Conway J.H., et al. Atlas of finite groups. Oxford: Clarendon Press, 1985, 252 p.
Cite this article as: B. Li, D.O. Revin. Examples of non-pronormal relatively maximal subgroups in finite simple groups. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 4, pp. 140–145; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2023, Vol. 323, Suppl. 1, pp. S155–S159.