In the set $\mathscr{T}_n$ of trigonometric polynomials $f_n$ of order $n$ with complex coefficients, the Weyl derivative (fractional derivative) $f_n^{(\alpha)}$ of real nonnegative order $\alpha$ is considered. We study the question about the constant in the Bernstein—Szegö inequality $\Bigl\|f_n^{(\alpha)}\cos\theta+\tilde{f}_n^{(\alpha)}\sin\theta\Bigr\|\le B_n(\alpha,\theta)\|f_n\|$ in the uniform norm. This inequality has been well studied for $\alpha\ge 1$: G.T. Sokolov proved in 1935 that it holds with the constant $n^\alpha$ for all $\theta\in\mathbb{R}$. For $0<\alpha<1$, there is much less information about $B_n(\alpha,\theta)$. In this paper, for $0<\alpha<1$ and $\theta\in\mathbb{R}$, we establish the limit relation $\lim_{n\to\infty}B_n(\alpha,\theta)/n^\alpha=\mathcal{B}(\alpha,\theta),$ where $\mathcal{B}(\alpha,\theta)$ is the sharp constant in the similar inequality for entire functions of exponential type at most~$1$ that are bounded on the real line. The value $\theta=-\pi\alpha/2$ corresponds to the Riesz derivative, which is an important particular case of the Weyl—Szegö operator. In this case, we derive an exact asymptotic expansion for the quantity $B_n(\alpha)=B_n(\alpha,-\pi\alpha/2)$ as $n\to\infty$.
Keywords: trigonometric polynomials, entire functions of exponential type, Weyl—Szegö operator, Riesz derivative, Bernstein inequality, uniform norm
Received July 3, 2023
Revised August 8, 2023
Accepted August 14, 2023
Funding Agency: This work was performed as a part of the research conducted in the Ural Mathematical Center and supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-02-2023-913).
Anastasiya Olegovna Leont’eva, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: lao-imm@yandex.ru
REFERENCES
1. Weyl H. Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 1917, vol. 62, no. 1–2, pp. 296–302.
2. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives. Theory and applications. Yverdon, Gordon and Breach, 1993, 976 p. ISBN: 9782881248641 . Original Russian text published in Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, Nauka i Tekhnika Publ., 1987, 638 p.
3. Leont’eva A.O. Bernstein–Szegö inequality for the Weyl derivative of trigonometric polynomials in $L_0$. Proc. Steklov Inst. Math., 2020, vol. 308, suppl. 1, pp. 127–134. doi: 10.1134/S0081543820020108
4. Bernstein S.N. On one property of entire functions. In: Sobranie sochinenii [Collected works], vol. 1: Konstruktivnaya teoriya funktsii [Constructive functions theory]. Moskow, Akad. Nauk SSSR Publ., 1952, 582 p.
5. Akhiezer N.I. Lektsii po teorii approksimatsii [Lectures on the Theory of Approximation]. Moscow, Nauka Publ., 1965, 409 p.
6. Arestov V.V. On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR Izv., 1982, vol. 18, no. 1, pp. 1–17. doi: 10.1070/IM1982v018n01ABEH001375
7. Arestov V.V., Glazyrina P.Yu. The Bernstein-Szegö inequality for fractional derivatives of trigonometric polynomials. Proc. Steklov Inst. Math., 2015, vol. 288, suppl. 1, pp. 13–28. doi: 10.1134/S0081543815020030
8. Gorbachev D.V. Sharp Bernstein–Nikolskii inequalities for polynomials and entire functions of exponential type. Chebyshevskii Sbornik, 2021, vol. 22, no. 5, pp. 58–110 (in Russian). doi: 10.22405/2226-8383-2021-22-5-58-110
9. Sokolov G.T. Some extremal properties of trigonometric sums. Izvestiya Akad. Nauk SSSR. VII series. Branch of mathematics and natural sciences, 1935, vol. 6–7, pp. 857–884 (in Russian).
10. Kozko A.I. The exact constants in the Bernstein–Zygmund–Szegö inequalities with fractional derivatives and the Jackson–Nikol’skii inequality for trigonometric polynomials. East J. Approx., 1998, vol. 4, no. 3, pp. 391–416.
11. Lizorkin P.I. Estimations of trigonometric integrals and Bernstein inequality for fractional derivatives. Izv. Akad. Nauk SSSR, Ser. Mat., 1965, vol. 4, no. 3, pp. 109–126 (in Russian).
12. Vinogradov O.L. Sharp error estimates for the numerical differentiation formulas on the classes of entire functions of exponential type. Siberian Math. J., 2007, vol. 48, no. 3, pp. 430–445. doi: 10.1007/s11202-007-0046-9
13. Civin P. Inequalities for trigonometric integrals. Duke Math. J., 1941, vol. 8, pp. 656–665. doi: 10.1215/S0012-7094-41-00855-4
14. Leont’eva A.O. Bernstein inequality for Riesz derivative of fractional order less than 1 of entire function of exponential type. Doklady RAN. Seriya “Matem., Inform., Protsessy Upravleniya”, 2023, vol. 514, pp. 118-121 (in Russian). doi: 10.31857/S2686954323600611
15. Stechkin S. B. On the multipliers problem for trigonometric polynomials. Doklady Akad. Nauk SSSR, 1950, vol. 75, no. 2, pp. 165–168 (in Russian).
16. Wilmes G. On Riesz-type inequalities and K-functionals related to Riesz potentials in $\mathbb{R}^N$. N. Numer. Funct. Anal. Optim., 1979, vol. 1, no. 1, pp. 57–77. doi: 10.1080/01630567908816004
17. Bang T. Une inégalite de Kolmogoroff et les fonctions presque-périodiques. Danske Vid. Selsk. Math.-Fys. Medd., 1941, vol. 19, no. 4, pp. 1–28.
18. Geysberg S.P. Analogs of S. N. Bernstein inequalities for fractional derivative. In: Questions of applied mathematics and mathematical modelling. Proceedings of 25th scientific conference (January, 24 — February, 4, 1967), Leningrad, Leningrad Engineer. Constr. Inst. Publ., 1967, pp. 5–10.
19. Ganzburg M.I. Sharp constants of approximation theory. IV. Asymptotic relations in general settings. Anal. Math., 2023, vol. 49, no. 1, pp. 79–136. doi: 10.1007/s10476-022-0185-z
20. Gorbachev D.V., Martyanov I.A. Bounds for polynomial Nikol’skii constants in Lp with Gegenbauer weight. Trudy Inst. Mat. Mekh. URO RAN, 2020, vol. 26, no. 4, pp. 126–137 (in Russian). doi: 10.21538/0134-4889-2020-26-4-126-137
21. Arestov V.V., Deikalova M.V. On one inequality of different metrics for trigonometric polynomials. Ural Math. J., 2022, vol. 8, no. 2, pp. 27–45. doi: 10.15826/umj.2022.2.003
22. Ganzburg M.I., Tikhonov S.Yu. On sharp constants in Bernstein–Nikolskii inequalities. Constr. Approx., 2017, vol. 45, pp. 449–466. doi: 10.1007/s00365-016-9363-1
23. Levitan B.M. On one generalization of S. N. Bernstein and H. Bohr inequalities. Doklady Akad. Nauk SSSR, 1937, vol. 15, pp. 169–172.
24. Fikhtengoltz G.M. Kurs differentsial’nogo i integral’nogo ischisleniya [Course of differential and integral calculus], vol. 2. 8th ed. Moscow, Fizmatlit Publ., 2003, 863 p. ISBN: 5-9221-0157-9 .
Cite this article as: A.O. Leont’eva. On constants in the Bernstein–Szegö inequality for the Weyl derivative of order less than unity of trigonometric polynomials and entire functions of exponential type in the uniform norm. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 4, pp. 130–139; Proceedings of the Steklov Institute of Mathematics (Suppl)., 2023, Vol. 323, Suppl. 1, pp. S146–S154.