In this paper, we study finite groups having a triple factorization $G=AB=AC=BC$, where the factors $A$, $B$, and $C$ are $\pi$-solvable subgroups of the group $G$ for some set $\pi$ of primes. This problem seems to have been first formulated by A.F. Vasil'ev and A.K. Furs in 2021 at the conference dedicated to the 90th anniversary of the birth of A.I. Starostin.
Keywords: finite group, subgroup, character, representation, factorization
Received April 15, 2023
Revised August 16, 2023
Accepted August 28, 2023
Funding Agency: This work was supported by Yaroslavl State University (program no. VIP-008).
Lev Sergeevich Kazarin, Dr. Phys.-Math. Sci., Prof., Yaroslavl P. Demidov State University, Yaroslavl, 150001 Russia, e-mail: lsk46@mail.ru
REFERENCES
1. Wielandt H. Uber die Normalstructur von mehrfach factorizierten Gruppen. J.Austral. Math.Soc., 1960, vol. 1, pp. 143–146.
2. Kazarin L.S. Factorizations of finite groups by solvable subgroups. Ukrainian Math. J., 1992, vol. 43, pp. 883–886.
3. Pennington E. Trifactorisable groups. Bull. Austral. Math. Soc., 1973, vol. 8, pp. 461–469.
4. Kazarin L.S., Martinez-Pastor A., Perez-Ramos M.D. Finite trifactorized groups and $\pi$-decomposable groups. Bull. Austral. Math. Soc., 2018, vol. 97, no. 2, pp. 218–228. doi: 10.1017/S0004972717001034
5. Gorenstein D. Finite groups. NY: Harper and Row, 1968, 642 p.
6. Herzog M. On finite simple groups of order divisible by three primes only. J. Algebra, 1968, vol. 10, no. 3, pp. 383–388.
7. Abe S., Iiyori N. A generalization of prime graphs of finite groups. Hokkaido Math. J., 2000, vol. 29, pp. 391–407.
8. Kazarin L.S., Tutanov V.N. On centers of soluble graph. Siberian Electronic Mathematical Reports, 2021, vol. 18, no. 2, pp. 1517–1530. doi: 10.33048/semi.2021.18.114
9. Liebeck M.W., Praeger C.E., Saxl J. The maximal factorizations of the finite simple groups and their automorphism groups, Providence, RI: Amer. Math. Soc., 1990, 151 p., Ser. Mem. Amer. Math. Soc. Vol. 86, no. 432.
10. Huppert B. Endliche Gruppen I. Berlin; Heidelberg; NY: Springer Verlag, 1967, Ser. Grundlehren der mathematischen Wissenschaften, Band 134, 793 p. doi: 10.1007/978-3-642-64981-3
11. Conway J.H., Curtis R.T., Norton S.P., Parker R.A. , Wilson R.A. Atlas of finite groups, Oxford: Clarendon Press, 1985, 252 p.
12. Kleidman P. The maximal subgroups of the finite 8-dimensional orthogonal groups $P\Omega_8^+(q)$ and their automorphism groups. J. Algebra, 1987, vol. 110, no. 1, pp. 173–242. doi: 10.1016/0021-8693(87)90042-1
13. Wilson R.A. The finite simple groups. Berlin; London: Springer, 2009. 298 p., Ser. Grad. Texts in Math. doi: 10.1007/978-1-84800-988-2
14. Bray J.N., Holt D.F., Roney-Douglas C.M. The maximal subgroups of the low-dimensional finite classical groups. Cambridge: Cambridge Univ. Press, 2013, 438 p. doi: 10.1017/CBO9781139192576
15. Suprunenko D.A. Gruppy podstanovok [Groups of substitutions]. Minsk, Navuka i Tjehnika Publ., 1996, 366 p.
16. Huppert B., Blackburn N. Finite groups III. Berlin; Heidelberg; NY: Springer Verlag, 1982, 454 p., Ser. Grundlehren der mathematischen Wissenschaften; Band 243. doi: 10.1007/978-3-642-67997-1
17. Ramanujan S. A proof of Bertrand’s postulate. J. Indian Math. Soc., 1919, vol. 11, pp. 181–182.
18. Kantor W.M. Homogeneous designs and geometric lattices. J. Combinatorian Theory. Ser. A., 1985, vol. 38, pp. 66–74.
19. Hauck P., Kazarin L., Martinez-Pastor A., Perez-Ramos M.D. Thompson-like characterization of solubility for products of finite groups. Ann. Mat. Pura Appl. (4), 2021, vol. 200 (1), pp. 337–362. doi: 10.1007/s10231-020-00998-z
20. Hall M. The theory of groups. NY, The Macmillan Co., 1959, 434 p. Translated to Russian under the title Teoriya grupp, Moscow, Izd. Inostr. Lit., 1962, 468 p.
Cite this article as: L.S. Kazarin. On products of $\pi$-solvable finite groups. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 4, pp. 109–120.