V.A. Belonogov. Finite simple groups with four conjugacy classes of maximal subgroups. I ... P. 52-62

We study the finite simple groups with exactly four conjugacy classes of maximal subgroups. The groups with this property are called $4M$-groups. We prove two theorems. Theorem 1 gives a complete list of finite simple $4M$-groups, which contains some linear and unitary groups as well Suzuki groups over the field of order $2^r$, where $r$ is a prime ($r>2$). In Theorem~2 we describe finite nonsolvable $4M$-groups without normal maximal subgroups. Thus, the paper gives a description of finite nonsolvable $4M$-groups that coincide with their commutator group. This study uses the author's earlier results on the structure of finite groups with exactly three conjugacy classes of maximal subgroups and Pazderski's results on the structure of finite groups with exactly two conjugacy classes of maximal subgroups.

Keywords: finite group, simple group, maximal subgroup.

The paper was received by the Editorial Office on September 1, 2017

Vyacheslav Aleksandrovich Belonogov, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics
and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990
Russia, e-mail: belonogov@imm.uran.ru .

REFERENCES

1.   Pazderski G. $\ddot{U}$ber maximal Untergruppen endlicher gruppen. Math. Nachr., 1964, vol. 26, no. 6, pp. 307-319.

2.   Belonogov  V.A. Finite groups with three classes of maximal subgroups. Math. USSR-Sb., 1988, vol. 59, no. 1, pp. 223-236. doi: 10.1070/SM1988v059n01ABEH003132.

3.   Hall M. The theory of groups. New York, The Macmillan Co., 1959, 434 p. Translated to Russian under the title Teoriya grupp,  Moscow, Izd. Inostr. Lit., 1962. 468 p.

4.   Gorenstein D. Finite groups. New York: Harper & Row., 1968, 642 p.

5.   Huppert B. Endliche Gruppen. I. Berlin, Springer, 1967, 793 p. doi: 10.1007/978-3-642-64981-3.

6.   Conway J.H., Curtis R.T., Norten S.P., Parker R.A., Wilson R.A. Atlas of finite groups. Oxford, Clarendon Press. 1985. 252 p.  ISBN: 9780198531999.

7.   Belonogov V. Finite groups with four classes of conjugate maximal subgroups. Groups and Graphs, Metrics and Manifolds : Intern. Conf. and PhD-Master Summer School  (Yekaterinburg, July 22-30, 2017) : Abstracts, Yekaterinburg, 2017,  pp. 40. ISBN: 978-5-8295-0529-5.

8.   Gorenstein D., Lyons R., Solomon R. The classification of the finite simple groups. N. Y.: Amer. Math. Soc., 1994. 165 p. ISBN: 0821803344.

9.   Liebeck M. W., Praeger C. E., Saxl J. The classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 1987, vol. 111, no. 2, pp. 365-383. doi: 10.1016/0021-8693(87)90223-7.

10.   Wilson R. A. The finite simple groups. London: Springer, 2009, 298 p. doi: 10.1007/978-1-84800-988-2.

11.   Carter R. W. Simple groups of Lie type. London, John Willey and Sons, 1972, 331 p. ISBN: 0471137359.

12.   Gorenstein D. Finite simple groups. An introduction to their classification.  N. Y., Plenum Publishing Corp.,  1982, University Series in Mathematics, 333 p. ISBN: 0-306-40779-5. Translated to Russian under the title Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Moscow, Mir Publ., 1985, 52 p.

13.   King O. The subgroup structure of finite classical groups interms of geometric configurations. Surveys in Combinatorics, 2005, London Math. Soc. Lecture Note Ser., vol. 327, pp. 29-56. doi: 10.1017/CBO9780511734885.003.

14.   Bray J. N., Holt D. F., Roney-Dougal C. M. The maximal subgroups of the low-dimensional finite classical groups.  London Math. Soc. Lect. Note Ser., vol. 407. Cambridge, Cambridge Univ. Press, 2013, 438 p. ISBN: 9780521138604.

15.   Suzuki M. On a class of doubly transitive groups. Ann. of Math.,  1962, vol. 75, pp. 105-145.

16.   Levchuk V.M., Nuzhin Ya. N. Structure of Ree groups. Algebra i Logika, 1985, vol. 24, pp. 26-41 (in Russian).

17.   Liebeck M. W., Saxl J., Seitz G. M.   Subgroups of maximal rank in finite exceptional groups of Lie type. Proc. London Math. Soc. (3), 1992, vol. 65, no. 2, pp. 297-325.