A.A. Vasil’eva. Kolmogorov widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness ... P. 55-63

Order estimates are obtained for the Kolmogorov $n$-widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness for large $n$. The weights have a general form, and one of them is in a certain sense significantly less than the other. The constants in the order equality are independent of the weights. Order estimates are obtained for the Kolmogorov $n$-widths of the intersection of two weighted Sobolev classes $W^r_{p_1,g_1}[a,\,b]$ and $W^r_{p_2,g_2}[a,\,b]$ in the weighted Lebesgue space $L_{q,v}[a,\,b]$ for large $n$. It is assumed that $p_1>p_2$. The weights $g_1$, $g_2$, and $v$ have general form. The conditions on these functions are such that the order of the width in $n$ is the same as for the unweighted Sobolev class $W^r_{p_1}[a,\,b]$. In addition, the weight $g_2$ in a certain sense is considerably less than the weight $g_1$. The constants in the order equality for the width depend only on $p_1$, $p_2$, $q$, and $r$. The upper estimate reduces to the use of our earlier result (2010) for one weighted Sobolev class. The lower estimate is derived by using the discretization method and estimating the width of the intersection of the $p_1$- and $p_2$-ellipsoids. Then a polyhedron of special form is inscribed in this set, and the required lower estimate is obtained for the width of the polyhedron under an appropriate choice of the parameters.

Keywords: Kolmogorov widths, intersection of function classes

Received August 2, 2023

Revised October 11, 2023

Accepted October 16, 2023

Funding Agency: This work was supported by the Russian Science Foundation (project no. 22-21-00204, https://rscf.ru/project/22-21-00204/).

Anastasia Andreevna Vasil’eva, Dr. Phys.-Math. Sci., Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991 Russia, e-mail: vasilyeva_nastya@inbox.ru

REFERENCES

1.   Vasil’eva A.A. Estimates for the widths of weighted Sobolev classes. Math. Sb., 2010, vol. 201, no. 7, pp. 947–984. doi: 10.1070/SM2010v201n07ABEH004098

2.   Lifshits M.A., Linde W. Approximation and entropy numbers of Volterra operators with application to Brownian motion. Mem. Amer. Math. Soc., 2002, vol. 157, no. 745. doi: 10.1090/memo/0745

3.   Edmunds D.E., Lang J. Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case. Math. Nachr., 2006, vol. 279, no. 7, pp. 727–742. doi: 10.1002/mana.200510389

4.   Lomakina E.N., Stepanov V.D. On asymptotic behaviour of the approximation numbers and estimates of Schatten–von Neumann norms of the Hardy-type integral operators. In: Proc. Conf. Function spaces and applications (New Delhi, 1997), New Delhi, Narosa Publ., 2000, pp. 153–187.

5.   Lomakina E.N., Stepanov V.D. Asymptotic estimates for the approximation and entropy numbers of a one-weight Riemann–Liouville operator. Sib. Advances Math., 2007, vol. 17, no. 1, pp. 1–36. doi: 10.3103/S1055134407010014

6.   Tikhomirov V.M. Approximation theory. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, 1987, vol. 14, pp. 103–260 (in Russian).

7.   Kashin B.S. Diameters of some finite-dimensional sets and classes of smooth functions. Math. USSR-Sbornik, 1977, vol. 11, no. 2, pp. 317–333. doi: 10.1070/IM1977v011n02ABEH001719

8.   Vasil’eva A.A. Kolmogorov widths of Sobolev classes on a segment with constraints on variation. Trudy Inst. Mat. Mekh. URO RAN, 2019, vol. 25, no. 2, pp. 48–66 (in Russian). doi: 10.21538/0134-4889-2019-25-2-48-66

9.   Galeev E. M. Kolmogorov widths of classes of periodic functions of one and several variables. Math. USSR-Izvestiya, 1991, vol. 36, no. 2, pp. 435–448. doi: 10.1070/IM1991v036n02ABEH002029

10.   Vasil’eva A. A. Kolmogorov widths of intersections of weighted Sobolev classes on an interval with conditions on the zeroth and first derivatives. Izvestiya Math., 2021, vol. 85, no. 1, pp. 1–23. doi: 10.1070/IM8969

11.   Pietsch A. s-numbers of operators in Banach spaces, Studia Math., 1974, vol. 51, no. 3, pp. 201–223. doi: 10.4064/sm-51-3-201-223

12.   Stesin M. I. Aleksandrov diameters of finite-dimensional sets and classes of smooth functions. Sov. Math. Dokl., 1975, vol. 16, pp. 252–256.

13.   Gluskin E. D. Norms of random matrices and widths of finite-dimensional sets. Math. USSR-Sbornik, 1984, vol. 48, no. 1, pp. 173–182. doi: 10.1070/SM1984v048n01ABEH002667

14.   Garnaev A. Yu., Gluskin E. D. On widths of the euclidean ball. Sov. Math. Dokl., 1984, vol. 30, pp. 200–204.

15.   Gluskin E. D. Intersections of a cube and a octahedron are badly approximated by subspaces of small dimension. Priblizhenie funktsii spetsial’nymi klassami operatorov [Approximation of functions by special class of operators] (collection of scientific works), Vologda, Vologda State Ped. Univ. Publ., 1987, pp. 35–41.

16.   Mayorov V. E. Discretization of widths problem. Uspekhi Matem. Nauk, 1975, vol. 30, no. 6 (186), pp. 179–180 (in Russian).

Cite this article as: A.A. Vasil’eva. Kolmogorov widths of the intersection of two weighted Sobolev classes on an interval with the same smoothness. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 4, pp. 55–63.