A. D. Mednykh, I. A. Mednykh, R. Nedelya. On the Oikawa and Arakawa theorems for graphs ... P. 243-252

The present paper is devoted to the further development of the discrete theory of Riemann surfaces, which was started in the papers by M. Baker and S. Norine at the beginning of the century. This theory considers finite graphs as analogs of compact Riemann surfaces and branched coverings of graphs as holomorphic maps. The genus of a graph is defined as the rank of its fundamental group. The main object of investigation in the paper is automorphism groups of a graph acting freely on the set of arcs. These groups are discrete analogs of groups of conformal automorphisms of a Riemann surface. The celebrated Hurwitz theorem (1893) states that the order of the group of conformal automorphisms of a compact Riemann surface of genus $g>1$ does not exceed $84(g-1)$. Later, K. Oikawa and T. Arakawa refined this bound in the case of groups that fix several finite sets of prescribed cardinalities. This paper provides proofs of discrete versions of the mentioned theorems. In addition, a graph-theoretic version of the E. Bujalance and G. Gromadzki result improving the Arakawa theorem is obtained.

Keywords: Riemann surface, Riemann-Hurwitz formula, graph, automorphism group, harmonic map.

The paper was received by the Editorial Office on June 14, 2017.

Aleksandr Dmitrievich Mednykh, Dr. Phys.-Math. Sci., Prof., Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosbirsk, 630090 Russia,
e-mail: smedn@mail.ru

Il’ya Aleksandrovich Mednykh, Cand. Sci. (Phys.-Math.), Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosbirsk, 630090 Russia,
e-mail: ilyamednykh@mail.ru

Roman Nedela, Dr. Sci., Prof. RNDr., University of West Bohemia, NTIS FAV, Universitni 8, Pilsen, Czech Republic, Matej Bel University, Tajovskeho 40, Banska Bystrica, Slovakia,
e-mail: roman.nedela@umb.sk; nedela@ntis.zcu.cz; nedela@savbb.sk

REFERENCES

1.   Baker M., Norine S. Harmonic morphisms and hyperelliptic graphs. Int. Math. Res. Notes, 2009, vol. 15, pp. 2914–2955. doi: 10.1093/imrn/rnp037 .

2.   Corry S. Genus bounds for harmonic group actions on finite graphs. Int. Math. Res. Not., 2011, vol. 19, pp. 4515–4533. arXiv:1006.0446v2. doi: 10.1093/imrn/rnq261 .

3.   Mednykh A.D. On the Riemann–Hurwitz formula for graph coverings [e-resource]. 2015. 8 p. Available at: https://arxiv.org/pdf/1505.00321.pdf .

4.   Mednykh A.D., Nedela R Harmonic mappings of graphs and Riemann-Hurwitz theorem. Dokl. Math., 2016, vol. 93, no. 1, pp. 23–26. doi: 10.1134/S1064562416010105 .

5.   Hurwitz A. Uber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann., 1892, vol. 41, pp. 403–442. doi: 10.1007/BF01443420 .

6.   Mednykh I.A. On the Farkas and Accola theorems for graphs. Dokl. Math., 2013, vol. 87, no. 1, pp. 65–68. doi: 10.1134/S1064562413010250 .

7.   Mednykh I. Discrete analogs of Farkas and Accolas theorems on hyperelliptic coverings of a Riemann surface of genus 2. Math. Notes., 2014, vol. 96, no. 1, pp. 84–94. doi: 10.1134/S0001434614070074 .

8.   Limonov M.P. Non-regular graph coverings and lifting the hyperelliptic involution. Siberian Elect. Math. Rep., 2015, vol. 12, pp. 372–380. doi: 10.17377/semi.2015.12.031 .

9.   Limonov M.P. Accola theorem on hyperelliptic graphs. Ars Mathematica Contemporanea, 2016, vol. 11, no. 1, pp. 91–99.

10.   Mednykh A., Mednykh I. On Wiman’s theorem for graphs. Discrete Math., 2015, vol. 338, pp. 1793–1800. doi: 10.1016/j.disc.2015.03.003 .

11.   Oikawa K. Note on conformal mapping of a Riemann surface onto itself. Kodai Math. Sem. Rep., 1956, vol. 8, no. 1, pp. 23–30. doi: 10.2996/kmj/1138843714 .

12.   Arakawa T. Automorphism groups of compact Riemann surfaces with invariant subsets. Osaka J. Math., 2000, vol. 37, pp. 823–846.

13.   Bujalance E., Gromadzki G. On automorphisms of Klein surfaces with invariant subsets. Osaka J. Math., 2013, vol. 50, pp. 251–269.

14.   Mednykh A.D., Mednykh I.A., Nedela R. A Generalization of Hurwitz’ theorem for groups acting on a graph. Doklady Mathematics, 2015, vol. 91, no. 1, pp. 87–90. doi: 10.1134/S1064562415010275 .

15.   Malnic A., Nedela, R., Skoviera M. Lifting graph automorphisms by voltage assignments. European J. Combin., 2000, vol. 21, no. 7, pp. 927–947. doi: 10.1006/eujc.2000.0390 .