# E.K. Kostousova. On a control synthesis in an enhanced evasion problem for linear discrete-time systems ... P.111-126

The evasion problem is considered for linear discrete-time systems with two controls that may have different aims. The aim of one of them is to exclude, regardless of the other, the trajectory hitting a given terminal set at a given final instant, and moreover to exclude the trajectory hitting a sequence of sets given at previous instants. We call it an enhanced evasion problem. Its special case is the problem of trajectory evasion from the terminal set at all instants. A method of control synthesis based on the construction of solvability tubes is presented. However, it is usually quite difficult to accurately construct them. Then it is assumed that the terminal and intermediate sets are parallelepipeds and both controls are bounded by parallelotope-valued constraints. A fast method of control synthesis based on the construction of a pair of polyhedral tubes with parallelepiped-valued cross-sections is proposed and justified. The proposed procedures are applicable for cases with possible degeneration or emptiness of the cross-sections at some instants. The cross-sections of the tubes and the control values are found from explicit formulas. Several variants of the control synthesis formula are given. Examples are given to illustrate the presented method.

Keywords: systems with uncertainties, evasion problem, control synthesis, polyhedral methods, parallelepipeds

Revised February 15, 2023

Accepted February 20, 2023

Elena Kirillovna Kostousova, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: kek@imm.uran.ru

REFERENCES

1.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY, Springer, 1988, 517 p.

2.   Kurzhanski A.B., Vályi I. Ellipsoidal calculus for estimation and control. In: Systems & Control: Foundations & Applications. Boston, Birkhäuser, 1997, 321 p.

3.   Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes: theory and computation. In: Systems & Control: Foundations & Applications, Book 85. Basel, Birkhäuser, 2014, 445 p. doi: 10.1007/978-3-319-10277-1

4.   Taras’ev A.M., Tokmantsev T.B., Uspenskii A.A., Ushakov V.N. On procedures for constructing solutions in differential games on a finite interval of time. J. Math. Sci., 2006, vol. 139, no. 5, pp. 6954–6975. doi: 10.1007/s10958-006-0400-7

5.   Zarkh M.A., Patsko V.S. The second player’s strategy in a linear differential game. J. Appl. Math. Mech., 1987, vol. 51, no. 2, pp. 150–155. doi: 10.1016/0021-8928(87)90056-6

6.   Botkin N., Martynov K., Turova V., Diepolder J. Generation of dangerous disturbances for flight systems. Dynamic Games and Applications, 2019, vol. 9, no. 3, pp. 628–651. doi: 10.1007/s13235-018-0259-5

7.   Esterhuizen W., Wang Q. Control design with guaranteed transient performance: An approach with polyhedral target tubes. Automatica, 2020, vol. 119, article no. 109097. doi: 10.1016/j.automatica.2020.109097

8.   Filimonov A.B., Filimonov N.B., Matvienko V.T. Polyhedral formalization of terminal control problems for discrete dynamic objects. Vysokoproizvoditel’nye vychislitel’nye sistemy i tekhnologii  [High performance computing systems and technologies], 2020, vol. 4, no. 1, pp. 224–230 (in Russian).

9.   Chernous’ko F.L. Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov [Estimation of phase state of dynamic systems: the ellipsoid method], Moscow, Nauka Publ., 1988, 319 p. (in Russian).

10.   Filippova T.F. HJB-inequalities in estimating reachable sets of a control system under uncertainty. Ural Math. J., 2022, vol. 8, no. 1, pp. 34–42. doi: 10.15826/umj.2022.1.004

11.   Gusev M.I. The limits of applicability of the linearization method in calculating small–time reachable sets. Ural Math. J., 2020, vol. 6, no. 1, pp. 71–83. doi: 10.15826/umj.2020.1.006

12.   Kurzhanskiy A.A., Varaiya P. Reach set computation and control synthesis for discrete-time dynamical systems with disturbances. Automatica, 2011, vol. 47, no. 7, pp. 1414–1426. doi: 10.1016/j.automatica.2011.02.009

13.   Kostousova E.K. On the polyhedral method of solving problems of control strategy synthesis. Proc. Steklov Inst. Math., 2016, vol. 292, suppl. 1, pp. S140–S155. doi: 10.1134/S0081543816020127

14.   Kostousova E.K. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete and Continuous Dynamical Systems – Series A, 2018, vol. 38, no. 12, pp. 6149–6162. doi: 10.3934/dcds.2018153

15.   Martynov K., Botkin N., Turova V., Diepolder J. Real-time control of aircraft take-off in windshear. Part I: Aircraft model and control schemes. In: IEEE Xplore Digital Library. 2017 25th Mediterranean Conference on Control and Automation (MED 2017): Proc., pp. 277–284. doi: 10.1109/MED.2017.7984131

16.   Martynov K., Botkin N.D., Turova V.L., Diepolder J. Quick construction of dangerous disturbances in conflict control problems. Annals of the International Society of Dynamic Games, 2020, vol. 17, pp. 3–24. doi: 10.1007/978-3-030-56534-3_1

17.   Kostousova E.K. On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems. Trudy Inst. Math. Mekh., 2021, vol. 27, no. 3, pp. 101–114 (in Russian). doi: 110.21538/0134-4889-2021-27-3-101-114

18.   Ushakov V.N., Guseinov Kh.G., Latushkin Ya.A., Lebedev P.D. On the coincidence of maximal stable bridges in two approach game problems for stationary control systems. Proc. Steklov Inst. Math. (Suppl.), 2010, vol. 268, suppl. 1, pp. S240–S263. doi: 10.1134/S0081543810050172

19.   Schneider R.G. Convex bodies: The Brunn-Minkowski theory. Cambridge, Cambridge Univ. Press, 1993, 490 p. doi: 10.1017/CBO9780511526282

20.   Hadwiger H. Vorlesungen uber Inhalt, Oberflache und Isoperimetrie. Berlin, Springer-Verlag, 1957, 312 p. Translated to Russian under the title Lektsii ob ob"eme, ploshchadi poverkhnosti i izoperimetrii, Moscow, Nauka Publ., 1966, 416 p.

21.   Kostousova E.K. Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control. Vychislitel’nye Tekhnologii (Computational Technologies), 2003, vol. 8, no. 4, pp. 55–74 (in Russian).

Cite this article as: E.K. Kostousova. On a control synthesis in an enhanced evasion problem for linear discrete-time systems, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, vol. 29, no. 1, pp. 111–126.