A.O. Leont’eva. Bernstein–Szegő inequality for trigonometric polynomials in the space $L_0$ with a constant greater than classical... P. 128-136

In the set $\mathscr{T}_n$ of trigonometric polynomials $f_n$ of order $n$ with complex coefficients, the Weyl derivative (fractional derivative) $f_n^{(\alpha)}$ of real nonnegative order $\alpha$ is considered. The exact constant $B_n(\alpha,\theta)_p$ in Bernstein—Szegő inequality $\|f_n^{(\alpha)}\cos\theta+\tilde{f}_n^{(\alpha)}\sin\theta \|_p\le B_n(\alpha,\theta)_p\|f_n\|_p$ is analyzed. Such inequalities have been studied for more than 90 years. It is known that, for $1\le p\le\infty$, $\alpha\ge 1$, and $\theta\in\mathbb R$, the constant takes the classical value $B_n(\alpha,\theta)_p=n^\alpha$. The case $p=0$ is of interest at least because the constant $B_n(\alpha,\theta)_0$ takes the maximum value in $p$ for $p\in[0,\infty]$. V.V. Arestov proved that, for $r\in\mathbb N$, the Bernstein inequality in $L_0$ holds with the constant $B_n(r,0)_0=n^r$, and the constant $B_n(\alpha,\pi/2)_0$ in the Szegő inequality in $L_0$ behaves as $4^{n+o(n)}$. V.V. Arestov in 1994 and V.V. Arestov and P.Yu. Glazyrina in 2014 studied the question of conditions on the parameters $n$ and $\alpha$ under which the constant in the Bernstein—Szegő inequality takes the classical value $n^\alpha$. Recently, the author has proved Arestov and Glazyrina's conjecture that the  Bernstein—Szegő inequality holds with the constant $n^\alpha$ for $\alpha\ge 2n-2$ and all $\theta\in\mathbb R$. The question about the exactness of the bound $\alpha=2n-2$, more precisely, the question of the best constant for $\alpha<2n-2$ remans open. In the present paper, we prove that for any $0\le\alpha<n$ one can find $\theta^*(\alpha)$ such that $B_n(\alpha, \theta^*(\alpha))_0>n^\alpha$.

Keywords: trigonometric polynomials, Weyl derivative, Bernstein—Szegő inequality, space $L_0$

Received May 20, 2022

Revised September 25, 2022

Accepted October 3, 2022

Funding Agency: This study is a part of the research carried out at the Ural Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2022-874).

Anastasiya Olegovna Leont’eva, Cand. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: lao-imm@yandex.ru

REFERENCES

1.   Arestov V.V. On inequalities of S.N. Bernstein for algebraic and trigonometric polynomials. Soviet Math. Dokl., 1979, vol. 20, no. 3, pp. 600–603.

2.   Arestov V.V. On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR Izv., 1982, vol. 18, no. 1, pp. 1–17. doi: 10.1070/IM1982v018n01ABEH001375 

3.   Arestov V.V. Integral inequalities for algebraic polynomials on the unit circle. Math. Notes, 1990, vol. 48, no. 4, pp. 977–984. doi: 10.1007/BF01139596 

4.   Arestov V.V. The Szego inequality for derivatives of a conjugate trigonometric polynomial in $L_0$. Math. Notes, 1994, vol. 56, no. 6, pp. 1216–1227. doi: 10.1007/BF02266689 

5.   Arestov V.V. Sharp inequalities for trigonometric polynomials with respect to integral functionals. Proc. Steklov Inst. Math., 2011, vol. 273, suppl. 1, pp. 21–36. doi: 10.1134/S0081543811050038 

6.   Arestov V.V., Glazyrina P.Yu. Integral inequalities for algebraic and trigonometric polynomials. Dokl. Math., 2012, vol. 85, no. 1, pp. 104–108. doi: 10.1134/S1064562412010371 

7.   Arestov V.V., Glazyrina P.Yu. The Bernstein-Szegő inequality for fractional derivatives of trigonometric polynomials. Proc. Steklov Inst. Math., 2015, vol. 288, suppl. 1, pp. 13–28. doi: 10.1134/S0081543815020030 

8.   Leont’eva A.O. Bernstein’s inequality for the Weyl derivatives of trigonometric polynomials in the space $L_0$. Math. Notes, 2018, vol. 104, no. 1-2, pp. 263–270. doi: 10.1134/S0001434618070271 

9.   Leont’eva A.O. Bernstein–Szegő inequality for the Weyl derivative of trigonometric polynomials in $L_0$. Proc. Steklov Inst. Math., 2020, vol. 308, suppl. 1, pp. 127–134. doi: 10.1134/S0081543820020108 

10.   Popov N.V. On integral inequality for trigonometric polynomials. In: Proc. Int. Conf. Voronezh Winter Math. School “Modern methods in theory of functions and adjacent problems”. Voronezh: Voronezh Univ. Publ., 2021, pp. 244–246 (in Russian). ISBN: 978-5-9273-3153-6 .

11.   Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives. Theory and applications. Yverdon: Gordon and Breach, 1993, 976 p. ISBN: 9782881248641 . Original Russian text published in Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya. Minsk: Nauka i Tekhnika Publ., 1987, 638 p.

12.   Pólya G., Szegö G. Problems and theorems in analysis. Berlin: Springer, 1998, vol. 1: 393 p. doi: 10.1007/978-3-642-61983-0 ; vol. 2: 392 p. doi: 10.1007/978-3-642-61905-2 . Translated to Russian under the title Zadachi i teoremy iz analiza, Moscow: Nauka Publ., 1978, vol. 1: 391 p.; vol. 2: 431 p.

13.   Hardy G.H., Littlewood J.E., Pólya G. Inequalities. London: Cambridge Univ. Press, 1988, 340 p. ISBN: 978-0-521-35880-4 . Translated to Russian under the title Neravenstva, Moscow: Inostr. Liter. Publ., 1948, 456 p.

14.   Arestov V., Glazyrina P. Sharp integral inequalities for fractional derivatives of trigonometric polynomials. J. Approx. Theory, 2012, vol. 164, no. 11, pp. 1501–1512. doi: 10.1016/j.jat.2012.08.004 

15.   Erdélyi T. Arestov’s theorems on Bernstein’s inequality. J. Approx. Theory, 2020, vol. 250, art. no. 105323. doi: 10.1016/j.jat.2019.105323 

16.   Leont’eva A.O. Bernstein–Szeg~o inequality for trigonometric polynomials in $L_p,$ $0\le p\le\infty$, with the classical value of the best constant. J. Approx. Theory, 2022, vol. 276, art. no. 105713. doi: 10.1016/j.jat.2022.105713 

17.   Weyl H. Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljahresschr. Naturforsch. Ges. Zürich, 1917, vol. 62, no. 1-2, pp. 296–302.

Cite this article as: A.O. Leont’eva. Bernstein–Szegő inequality for trigonometric polynomials in the space L0 with a constant greater than classical, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2022, vol. 28, no. 4, pp. 128–136