M.G. Grigoryan. On almost universal double Fourier series ... P. 91-102

The first examples of universal trigonometric series in the class of measurable functions were constructed by D.E. Men'shov. As follows from Kolmogorov's theorem (the Fourier series of each integrable function in the trigonometric system converges in measure), there is no integrable function whose Fourier series in the trigonometric system is universal in the class of all measurable functions. The author has constructed a function  $U\in L^1(\mathbb{T})$, $\mathbb{T}=[-\pi,\pi)$, such that, after an appropriate choice of the signs $\{\delta_{k}=\pm1\}_{k=-\infty}^{\infty}$ for its Fourier coefficients, the series $\sum_{k=0}^{\infty}\delta_{k}\big(a_{k}(U)\cos kx+b_{k}(U)\sin kx\big)$ is universal in the class of all measurable functions. The first examples of universal functions were constructed by G. Birkhoff in the framework of complex analysis, where entire functions were represented in any circle by uniformly convergent shifts of the universal function, and by Yu. Martsinkevich in the framework of real analysis, where any measurable function was represented as an almost everywhere limit of some sequence of difference relations of the universal function. In this paper we construct an integrable function $u(x,y)$ of two variables such that, after an appropriate choice of the signs $\{\delta_{k,s}=\pm1\}_{k,s=-\infty}^{\infty}$ for its Fourier coefficients $\widehat{u}_{k,s}$, the series $\sum_{k,s=-\infty}^{\infty}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ in the double trigonometric system $\{e^{ikx}, e^{isy}\}_{k,s=-\infty}^{\infty}$ is universal in the class $L^{p}(\mathbb{T}^{2})$, $p\in(0,1)$, and hence in the class of all measurable functions. More precisely, it is established that both rectangular partial sums $S_{n,m}(x,y)=\sum_{|k|\leq n}\sum_{|s|\leq m}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ and spherical partial sums $S_{R}(x,y)=\sum_{k^{2}+s^{2}\leq R^{2}}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ of the series $\sum_{k,s=-\infty}^{\infty}\delta_{k,s}{\widehat{u}}_{k,s}e^{i(kx+sy)}$ are dense in $L^{p}(\mathbb{T}^{2})$. Recently S.V. Konyagin has proved that there is no function $u\in L^{1}(\mathbb{T}^{d}),$ $d\geq2$, such that the rectangular partial sums of its multiple trigonometric Fourier series are dense in $L^{p}(\mathbb{T}^{2})$, $p\in(0,1)$). This means that the author's result formulated here is, in a sense, final.

Keywords: universal function, universal series, multiple Fourier series in a trigonometric system

Received May 18, 2022

Revised August 27, 2022

Accepted September 3, 2022

Funding Agency: This study was supported by the Science Committee of the Republic of Armenia (project no. 21AG-1A066).

Martin Gevorg Grigoryan, Dr. Phys.-Math. Sci., Prof.,Yrevan State Univesiti, Yrevan, 0025 Armenia, e-mail: gmarting@ysu.am

REFERENCES

1.   Birkhoff G.D. Démonstration d’un théoréme élémentaire sur les fonctions entiéres. C. R. Acad. Sci. Paris, 1929, vol. 189, pp. 473–475.

2.   Marcinkiewicz J. Sur les nombres derives. Fund. Math., 1935, vol. 24, pp. 305–308.

3.   MacLane G.R. Sequences of derivatives and normal families. J. Anal. Math., 1952, vol. 2, no. 1, pp. 72–87. doi: 10.1007/BF02786968 

4.   Krotov V.G. On the smoothness of universal Marcinkiewicz functions and universal trigonometric series. Russian Math. (Iz. VUZ), 1991, vol. 35, no. 8, pp. 24–28.

5.   Grosse-Erdmann K.G. Holomorphe Monster und universelle Funktionen. In: Mitt. Math., Semin. Giessen, 1987, vol. 176, pp. 1–84.

6.   Luh W. Universal approximation properties of overconvergent power series on open sets. Analysis, 1986, vol. 6, no. 2-3, pp. 191–207. doi: 10.1524/anly.1986.6.23.191 

7.   Mueller J. Continuous functions with universally divergent Fourier series on small subsets of the circle. C. R. Math. Acad. Sci. Paris, 2010, vol. 348, pp. 1155–1158. doi: 10.1016/j.crma.2010.10.026 

8.   Bayart F., Grosse-Erdmann K.-G., Nestoridis V., Papadimitropoulos C. Abstract theory of universal series and applications. Proc. Lond. Math. Soc., 2008, vol. 96, no. 2, pp. 417–463. doi: 10.1112/plms/pdm043 

9.   Menchoff D. On partial sums of trigonometric series. Rec. Math. [Mat. Sbornik] N.S., 1947, vol. 20 (62), no. 2, pp. 197–238 (in Russian).

10.   Talalyan A.A. On the convergence almost everywhere of subsequences of partial sums of general orthogonal series. Izv. Akad. Nauk Arm. SSR, Ser. Fiz.-Mat. Nauk, 1957, vol. 10, no. 3, pp. 17–34 (in Russian).

11.   Kolmogorov A. Sur les fonctions harmoniques conjuguées et les séries de Fourier. Fund. Math., 1925, vol. 7, pp. 24–29. doi: 10.4064/fm-7-1-24-29 

12.   Grigoryan M.G. Functions, universal with respect to the classical systems. Adv. Oper. Theory, 2020, vol. 5, no. 4, pp. 1414–1433. doi: 10.1007/s43036-020-00051-z 

13.   Grigoryan M., Galoyan L. Functions universal with respect to the trigonometric system. Izv. Math., 2021, vol. 85, pp. 241–261. doi: 10.1070/IM8964 

14.   Grigoryan M.G. Universal Fourier series. Math. Notes, 2020, vol. 108, no. 2, pp. 282–285. doi: 10.1134/S0001434620070299 

15.   Kashin B.S. On a complete orthonormal system. Sb. Math., 1976, vol. 28, no. 3, pp. 315–324. doi: 10.1070/SM1976v028n03ABEH001654 

16.   Grigoryan M.G., Sargsyan A.A. On the universal function for the class $L^{p}[0,1],p\in(0,1)$. J. Funct. Anal., 2016, vol. 270, no. 8, pp. 3111–3133. doi: 10.1016/j.jfa.2016.02.021 

17.   Grigoryan M.G. On the existence and structure of universal functions. Dokl. Math., 2021, vol. 103, no. 1, pp. 23–25. doi: 10.1134/S1064562421010051 

18.   Grigoryan M.G. On the universal and strong $(L^1,L^\infty)$-property related to Fourier–Walsh series. Banach J. Math. Anal., 2017, vol. 11, no. 3, pp. 698–712. doi: 10.1215/17358787-2017-0012 

19.   Grigoryan M.G., Galoyan L.N. On the universal functions. J. Approx. Theory, 2018, vol. 225, no. 191, pp. 191–208. doi: 10.1016/j.jat.2017.08.003 

20.   Grigoryan M.G. Functions with universal Fourier–Walsh series. Sb. Math., 2020, vol. 211, no. 6, pp. 850–874. doi: 10.1070/SM9302 

21.   Getsadze R.D. On the divergence in measure of multiple Fourier series. Soobshch. Akad. Nauk Gruz. SSR, 1986, vol. 122, no. 2, pp. 269–272 (in Russian).

22.   Konyagin S.V. Divergence in measure of multiple Fourier series. Math. Notes, 1988, vol. 44, no. 2, pp. 589–592. doi: 10.1007/BF01159253 

23.   Konyagin S.V. On the Pringsheim convergence of a subsequence of partial sums of trigonometric Fourier series. Trudy Inst. Mat. i Mekh. UrO RAN, 2022, vol. 28, no. 4 (in Russian).

Cite this article as: M.G. Grigoryan. On almost universal double Fourier series. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 4, pp. 121--127; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2022, Vol. 319, Suppl. 1, pp. S129–S139.