On one generalized translation and the corresponding inequality of different metrics. In this paper, we discuss the properties of the generalized translation operator generated by the system of functions $\left\{ \cos\left(\frac{(2k-1)\pi }{2}t\right)\right\}_{k=1}^\infty$, in the spaces $L^p(0,1)$, $p\ge 1.$ The translation operator is applied to the study of Nikol'skii's inequality between the uniform norm and the $L^p$-norm of polynomials in this system.
Keywords: generalized translation operator, trigonometric polynomial, inequality of different metrics
Received June 5, 2022
Revised July 5, 2022
Accepted July 11, 2022
Funding Agency: This work was performed as a part of the research conducted in the Ural Mathematical Center and supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-02-2022-874).
Vitalii Vladimirovich Arestov, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: vitalii.arestov@urfu.ru
Marina Valer’evna Deikalova, Cand. Sci. (Phys.-Math.), Ural Federal University, Yekaterinburg, 620000 Russia; Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; e-mail: marina.deikalova@urfu.ru
REFERENCES
1. Watson G.N. A treatise on the theory of Bessel functions. Cambridge: Cambridge Univ. Press, 1995, 814 p. ISBN: 0521483913 . Translated to Russian under the title Teoriya besselevykh funktsii. Ch. 1, Moscow: Inostr. Liter. Publ., 1949, 798 p.
2. Bateman G., Erdélyi A., et al. Higher transcendental functions. Vol. II. NY: McGraw Hill Book Company, 1953, 396 p. ISBN: 0486446158 . Translated to Russian under the title Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya, Moscow: Nauka Publ., 1966, 295 p.
3. Vladimirov V.S. Generalized functions in mathematical physics. Moscow: Mir Publ., 1979, 362 p. ISBN: 071471545X . Original Russian text published in Vladimirov V.S. Uravneniya matematicheskoi fiziki. Moscow: Nauka Publ., 1981.
4. Babenko A.G. Exact Jackson–Stechkin inequality in the space $L^2(\mathbb{R}^m)$. Trudy Inst. Mat. Mekh. UrO RAN, 1998, vol. 5, pp. 183–198 (in Russian).
5. Abilov V.A., Abilova F.V., Kerimov M.K. Some issues concerning approximations of functions by Fourier–Bessel sums. Comput. Math. Math. Phys., 2013, vol. 53, no. 7, pp. 867–873. doi: 10.1134/S0965542513070026
6. Arestov V., Babenko A., Deikalova M., Horváth A. Nikol’skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line. Anal. Math., 2018, vol. 44, no. 1, pp. 21–42. doi: 10.1007/s10476-018-0103-6
7. Levitan B.M. Expansion in Fourier series and integrals with Bessel functions. Uspekhi Mat. Nauk, 1951, vol. 6, no. 2, pp. 102–143 (in Russian).
8. Nikol’skii S.M. Kurs matematicheskogo analiza [A course of mathematical analysis]. Vol. 1. Moscow: Nauka Publ., 1983, 461 p.
9. Gashkov S.B., Chubarikov V.N. Arifmetika, algoritmy, slozhnost’ vychislenii [Arithmetic, algorithms, complexity of computation]. Moscow: Drofa Publ., 2005, 320 p.
10. Stein E.M., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ. Press, 1971, 312 p.
11. Arestov V.V. A characterization of extremal elements in some linear problems. Ural Math. J., 2017, vol. 3, no. 2, pp. 22–32. doi: 10.15826/umj.2017.2.004
12. Arestov V.V., Deikalova M.V. Nikol’skii inequality for algebraic polynomials on a multidimensional Euclidean sphere. Proc. Steklov Inst. Math., 2014, vol. 284, suppl. 1, pp. 9–23. doi: 10.1134/S0081543814020023
13. Arestov V., Deikalova M. Nikol’skii inequality between the uniform norm and $L_q$-norm with ultraspherical weight of algebraic polynomials on an interval. Comput. Methods Funct. Theory, 2015, vol. 15, no. 4, pp. 689–708. doi: 10.1007/s40315-015-0134-y
14. Arestov V., Deikalova M. Nikol’skii inequality between the uniform norm and $L_q$-norm with Jacobi weight of algebraic polynomials on an interval. Anal. Math., 2016, vol. 42, no. 2, pp. 91–120. doi: 10.1007/s10476-016-0201-2
15. Arestov V., Deikalova M., Horváth A. On Nikol’skii type inequality between the uniform norm and the integral q-norm with Laguerre weight of algebraic polynomials on the half-line. J. Approx. Theory, 2017, vol. 222, pp. 40–54. doi: 10.1016/j.jat.2017.05.005
16. Pólya G., Szegö G. Problems and theorems in analysis. Vol. 2. Berlin: Springer, 1998, 392 p. doi: 10.1007/978-3-642-61905-2 . Translated to Russian under the title Zadachi i teoremy iz analiza. T. 2. Moscow: Nauka Publ., 1978, 432 p.
17. Taikov L.V. A group of extremal problems for trigonometric polynomials. Uspekhi Mat. Nauk, 1965, vol. 20, no. 3, pp. 205–211.
18. Babenko V., Kofanov V., Pichugov S. Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions. In: Bojanov, B. (ed.) Approximation Theory: A Volume Dedicated to Blagovest Sendov. Sofia: Darba, 2002, ISBN: 954-90126-5-4/hbk , pp. 24–53.
19. Gorbachev D.V. A sharpening of the Taikov lower bound in the inequality between the C- and L-norms for trigonometric polynomials. Math. Notes, 2003, vol. 74, no. 1, pp. 123–126. doi: 10.1023/A:1025079402595
20. Gorbachev D.V. An integral problem of Konyagin and the (C,L)-constants of Nikol’skii. Proc. Steklov Inst. Math., 2005, suppl. 2, pp. S117–S138.
21. Gorbachev D.V. Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya. [Selected problems in functional analysis and approximation theory and their applications]. Tula: Grif i K Publ., 2005, 152 p. ISBN: 5-7679-0644-0 .
22. Ganzburg M.I., Tikhonov S.Y. On sharp constants in Bernstein–Nikolskii inequalities. Constr. Approx., 2017, vol. 45, no. 3, pp. 449–466. doi: 10.1007/s00365-016-9363-1
23. Gorbachev D.V., Mart’yanov I.A. On interrelation of Nikolskii constants for trigonometric polynomials and entire functions of exponential type. Chebyshevskii Sbornik, 2018, vol. 19, no. 2, pp. 80–89. doi: 10.22405/2226-8383-2018-19-2-80-89 (in Russian).
Cite this article as: V.V. Arestov, M.V. Deikalova. On one generalized translation and the corresponding inequality of different metrics. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 4, pp. 40–53; Proceedings of the Steklov Institute of Mathematics (Suppl. 1), 2022, Vol. 319, Suppl. 1, pp. S30–S42.