D.A. Serkov. Transfinite version of the program iteration method in a convergence game problem for an abstract dynamical system ... P. 176-187

The game problem of convergence of motions is considered for an abstract dynamical system with a given target set inside the phase constraints. An arbitrary subset of real numbers acts as a time "interval". The target set $\mathcal M$  and the phase constraints $\mathcal N$ obey the $\mathcal M\subset\mathcal N$ embedding. Nonanticipating multifunctions defined on the histories of disturbances are considered as admissible control strategies. A description of the solvability set and the construction of resolving control strategies based on the method of program iterations are given. At the same time, by increasing the "number"' of iterations of the program absorption operator, it is possible to expand (compared to the original version of the method) the areas of applicability due to the weakening or complete rejection of the topological requirements to the system dynamics, the target set, and phase constraints. The proposed constructions and their justification use the technique of fixed points of monotone mappings in partially ordered sets.

Keywords: convergence game problem, program iterations, abstract dynamical system, non-anticipating strategies

Received June 1, 2022

Revised July 11, 2022

Accepted July 18, 2022

Funding Agency: This study is a part of the research carried out at the Ural Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2022-874).

Dmitrii Aleksandrovich Serkov, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: serkov@imm.uran.ru

REFERENCES

1.   Krasovskii N.N., Subbotin A.I. An alternative for the game problem of convergence. J. Appl. Math. Mech., 1970, vol. 34, no. 6, pp. 948–965. doi: 10.1016/0021-8928(70)90158-9 

2.   Krasovskii N.N., Subbotin A.I. Pozicionnye differencial’nye igry [Positional differential games]. Moscow: Nauka Publ., 1974, 458 p.

3.   Chentsov A.G. The structure of a certain game-theoretic approach problem. Dokl. Akad. Nauk SSSR, 1975, vol. 224, no. 6, pp. 1272–1275 (in Russian).

4.   Chentsov A.G. On a game problem of guidance. Sov. Math., Dokl., 1976, vol. 17, pp. 73–77.

5.   Dyatlov V.P., Chentsov A.G. Monotone iterations of sets and their applications to control games. Cybernetics, 1987, vol. 23, no. 2, pp. 259–268. doi: 10.1007/BF01071786 

6.   Ukhobotov V.I. Construction of a stable bridge for a class of linear games. J. Appl. Math. Mech., 1977, vol. 41, no. 2, pp. 350–354. doi: 10.1016/0021-8928(77)90021-1 

7.   Chistyakov S.V. On solutions for game problems of pursuit. Prikl. Mat. Mekh., 1977, vol. 41, no. 5, pp. 825–832 (in Russian).

8.   Chentsov A.G. An abstract confinement problem: a programmed iterations method of solution. Automation and Remote Control, 2004, vol. 65, no. 2, pp. 299–310. doi: 10.1023/B:AURC.0000014727.63912.45 

9.   Barbashin E.A. Towards the theory of generalized dynamical systems. Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta, 1949, pp. 110–133 (in Russian).

10.   Roxin E. Stability in general control systems. J. Diff. Eq., 1965, vol. 1, pp. 115–150.

11.   Baidosov V.A. Approach to the definition of dynamical games in terms of generalized dynamical systems. In: Optimal control of systems with uncertain information , eds. V.A. Baidosov, A.I. Subbotin, Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk SSSR Publ., 1980, pp. 3–11 .

12.   Serkov D.A. Transfinite sequences in the method of programmed iterations. Proc. Steklov Inst. Math., 2018, vol. 300, suppl. 1, pp. 153–164. doi: 10.1134/S0081543818020153 

13.   Kuratowski K., Mostowski A. Set theory. Warszawa: PWN — Polish Scientific Publishers, 1968, 417 p. ISBN: 9780444534170 . Translated to Russian under the title Teoriya mnozhestv, Moscow: Mir Publ., 1970, 416 p.

14.   Serkov D.A., Chentsov A.G. Programmed iteration method and operator convexity in an abstract retention problem. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015, vol. 25, no. 3, pp. 348–366 (in Russian).

Cite this article as: D.A. Serkov. Transfinite version of the program iteration method in a convergence game problem for an abstract dynamical system. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 3, pp. 176–187; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2022, Vol. 319, Suppl. 1, pp. S218–S228.