V.F. Vil'danova. Aggregation equation with anisotropic diffusion ... P. 58-73.

A mixed problem for the aggregation equation with anisotropic degenerating diffusion is studied. The uniqueness of the solution is proved by the method of energy estimates. For this, a special test function is constructed as a solution of an auxiliary elliptic problem. Preliminarily, we study a problem with smooth data, where the nonlocal term with convolution is replaced by a smooth vector. For this problem, we establish the nonnegativity of the solution and find an upper bound for its growth. The existence of the solution is first proved for the nondegenerate equation by a combination of the iteration method and the method of contracting mappings. Passing to the limit, we obtain a solution of the degenerate limit problem from solutions $u_{\varepsilon}$ of the approximating equation. Here, we apply the compactness principle in $L_1$, which is similar to the principle developed in the known paper by Alt and Luckhaus. The equations under consideration appear in biological aggregation models.

Keywords: aggregation equation, anisotropic diffusion, solution existence, uniqueness of solution.

The paper was received by the Editorial Office on March 16, 2017.

Venera Fidarisovna Vildanova, Cand. Sci. (Phys.-Math.), Bashkir State Pedagogical University of M.~Akmulla, Ufa, 450000 Russia, e-mail: gilvenera@mail.ru


1.   Bertozzi A., Slepcev D. Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion. Comm. Pur. Appl. Anal., 2010, vol. 6, no. 9, pp. 1617–1637.
doi: 10.3934/cpaa.2010.9.1617 .

2.   Boi S., Capasso V., Morale D. Modeling the aggregative behavior of ants of the species polyergus rufescens. Nonlinear Anal. Real World Appl., 2000, vol. 1, no. 1, pp. 163–176.
doi: 10.1016/S0362-546X(99)00399-5 .

3.   Eftimie R., Vries G., Lewis M.A., Lutscher F. Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull. Math. Biol., 2007, vol. 146, no. 69, pp. 1537–1565. doi: 10.1007/s11538-006-9175-8 .

4.    Milewski P.A., Yang X. A simple model for biological aggregation with asymmetric sensing. Commun. Math. Sci., 2008, vol. 6, no. 2, pp. 397–416. doi: 10.4310/CMS.2008.v6.n2.a7 .

5.   Morale D., Capasso V., Oelschlager K. An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol., 2005, vol. 50, no. 1, pp. 49–66.
doi: 10.1007/s00285-004-0279-1 .

6.   Topaz C.M., Bertozzi A.L., Lewis M.A. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 2006, vol. 68, no. 7, pp. 1601–1623. doi: 10.1007/s11538-006-9088-6 .

7.   Topaz C.M.,Bertozzi A.L. A swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math., 2004, vol. 65, no. 1, pp. 152–174. doi: 10.1137/S0036139903437424 .

8.   Burger M., Fetecau R. C., Huang Y. A Stationary States and Asymptotic Behavior of Aggregation Models with Nonlinear Local Repulsion. SIAM J. Appl. Dyn. Syst., 2014, vol. 13, iss. 1, pp. 397–424. doi: 10.1137/130923786 .

9.   Blanchet A., Carrillo J. A., Laurencot P. Critical mass for a Patlak- Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differential Equations, 2009, vol. 35, no. 2, pp. 133–168. doi: 10.1007/s00526-008-0200-7 .

10.   Carrillo J.A., Hittmeir S., Volzone B., Yao Y. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. arXiv:1603.07767v1[math.ap]. 2016.
Available at: https://arxiv.org/pdf/1603.07767.pdf .

11.   Andriyanova E.R., Mukminov F.Kh. Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity. Mat. Sb., 2016, vol. 207, no. 1, pp. 3–44. doi: 10.4213/sm8484 .

12.   Ladyzhenskaya O.A. Ural’tseva, N.N. Lineinye i kvazilineinye uravneniya ellipticheskogo tipa [Linear and quasilinear equations of elliptic type]. Moscow, Nauka Publ., 1973, 576 p.

13.   Lions J.L., Magenes E. Probl`emes aux limites non homog`enes et applications. Vol. 1. Paris, Dunod, 1968, 372 p. Translated to Russian under the title Neodnorodnye granichnye zadachi i ikh prilozheniya. Moscow, Mir Publ., 1971, 371 p.

14.   Stein E.M., Weiss G. Introduction to Fourier analysis on Euclidean spaces. Princeton: Princeton Univ. Press, 1971, 312 p. ISBN: 069108078X .

15.   Ladyzhenskaya O.A., Solonnikov, V.A. Ural’tseva, N.N. Linear and quasi-linear equations of parabolic type. Providence, RI: American Mathematical Society, 1968, Ser. Translations of Mathematical Monographs, 23, 648 p. Original Russian text published in Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Lineinye i kvazilineinye uravneniya parabolicheskogo tipa. Moscow, Nauka Publ., 1967, 736 p.

16.   Guscin A.K. Some properties of a generalized solution of the second boundary-value problem for a parabolic equation. Math. of the USSR-Sb., 1975, vol. 26, no. 2, pp. 225–244. doi: 10.1070/SM1975v026n02ABEH002478 .

17.   Alt H.W., Luckhaus S. Quasilinear elliptic-parabolic differential equations. Math. Z., 1983, vol. 183, pp. 311–341. doi: 10.1007/BF01176474 .

18.   Brezis H. Analyse fonctionnelle: thДeorie et applications. [Collection MathДematiques AppliquДees pour la Ma^trise]. Paris, Masson, 1983, 233 p. ISBN: 2225771987 .