E.I. Atamas, A.V. Il’in. On the reduction of systems with incommensurate delays to a form with zero dynamics ... P. 30-37

A form with zero dynamics for time-delay systems is considered. The results obtained earlier for the case of commensurate delays are transferred to systems with incommensurate delays. Conditions are obtained under which the reduction to such a form is possible, and an algorithm for constructing the corresponding transformation is described.

Keywords: time-delay systems, incommensurate delays, zero dynamics

Received June 1, 2022

Revised July 7, 2022

Accepted July 11, 2022

Funding Agency: This work was supported by a grant of the President of the Russian Federation for young scientists (project no. MK-4905.2021.1.1).

Alexander Vladimirovich Il’in, Dr. Phys.-Math. Sci., Prof., Lomonosov Moscow State University, Moscow, 119992 Russia, e-mail: iline@cs.msu.ru

Evgeny Ivanovich Atamas, Cand. Sci. (Phys.-Math.), Lomonosov Moscow State University, Moscow, 119992 Russia, e-mail: eatamas@cs.msu.ru


1.   Korovin S.K., Fomichev V.V. State observers for linear systems with uncertainty. Berlin: Walter de Gruyter, 2009, 242 p. doi: 10.1515/9783110218138 . Original Russian text published in Korovin S.K., Fomichev V.V. Nablyudateli sostoyaniya dlya lineinykh sistem s neopredelennost’yu, Moscow: Fizmatlit Publ., 2007, 224 p.

2.   Atamas’ E.I., Il’in A.V., Fomichev V.V. Inversion of vector delay systems. Differential Equations, 2013, vol. 49, no. 11, pp. 1329–1335. doi: 10.1134/s0012266113110013 

3.   Isidori A. The zero dynamics of a nonlinear system: from the origin to the latest progresses of a long successful story. European J. Control, 2013, vol. 19, no. 5, pp. 369–378. doi: 10.1016/j.ejcon.2013.05.014 

4.   Zeng C., Liang S., Li H. Asymptotic properties of zero dynamics for nonlinear discretized systems with time delay via Taylor method. Nonlinear Dynamics, 2015, vol. 79, no. 2, pp. 1481–1493. doi: 10.1007/s11071-014-1755-9 

5.   Conte G., Perdon M. A notion of zero dynamics for linear, time-delay system. IFAC Proc. Volumes, 2008, vol. 41, no. 2, pp. 1255–1260. doi: 10.3182/20080706-5-KR-1001.00216 

6.   Bejarano F. Zero dynamics normal form and disturbance decoupling of commensurate and distributed time-delay systems. Automatica, 2021, vol. 129, art. no. 109634. doi: 10.1016/j.automatica.2021.109634 

7.   Il’in A.V., Atamas’ E.I., Fomichev V.V. Transformation of time-delay systems to a form with zero dynamics. Dokl. Math., 2018, vol. 97, no. 3, pp. 203–206. doi: 10.1134/S106456241803002X 

8.   Morse A. Ring models for delay-differential systems. Automatica, 1976, vol. 12, no. 5, pp. 529–531. doi: 10.1016/0005-1098(76)90013-3 

9.   Fomichev V.V., Kraev A.V., Rogovskiy A.I. Reduction of systems to a form with relative degree using dynamic output transformation. Differential Equations, 2017, vol. 53, no. 5, pp. 686–700. doi: 10.1134/S0012266117050123 

10.   Fabianska A., Quadrat A. Applications of the Quillen–Suslin theorem to multidimensional systems theory. In: Grobner bases in control theory and signal processing. Berlin; Boston: De Gruyter, 2011, pp. 23–106. doi: 10.1515/9783110909746.23 

Cite this article as: E.I. Atamas’, A.V. Il’in. On the reduction of systems with incommensurate delays to a form with zero dynamics. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 3, pp. 30–37.