B.M. Arystanbekov, N.B. Melnikov. Projection method for economic growth problems on an infinite time interval ... P. 17-29

A projection method is proposed for economic growth problems on an infinite interval. The orthogonal Laguerre polynomials multiplied by an exponential are used as the basis functions for the parametrization of the solution. Convergence of the method has been studied numerically for integrable cases in the Ramsey model. It is shown that the best convergence of the method is achieved if the parameter in the exponent is chosen to be equal to the negative eigenvalue of the linearization matrix of the Hamiltonian system at the equilibrium at infinity. In the considered examples, the projection method leads to a system of equations with a small number of unknowns, in contrast to the methods using finite difference approximation.

Keywords: Galerkin method, Gauss–Laguerre quadrature, infinite-horizon control problem, transversality conditions, Ramsey model, CRRA utility function, Bernoulli transformation

Received May 30, 2022

Revised July 24, 2022

Accepted August 1, 2022

Batyr Maratovich Arystanbekov, Lomonosov Moscow State University, Moscow, 119991 Russia, e-mail: arysbatyr@gmail.com

Nikolai Borisovich Melnikov, Dr. Phys.-Math. Sci., Lomonosov Moscow State University, Moscow, 119991 Russia, e-mail: melnikov@cs.msu.ru


1.   Boyd J.P. Chebyshev and Fourier spectral methods. 2nd edn. NY: Dover Publ., 2001, 688 p. ISBN: 0486411834 .

2.   Press W.H., Teukolsky S.A., Vetterling T., Flannery B.P. Numerical recipes, 3rd edn. NY: Cambridge Univ. Press, 2007, 1256 p. ISBN: 0521880688 .

3.   Judd K.L. Projection methods for solving aggregate growth models. J. Econ. Theory, 1992, vol. 58, no. 2, pp. 410–452. doi: 10.1016/0022-0531(92)90061-L 

4.   Miftakhova A., Schmedders K., Schumacher M. Computing economic equilibria using projection methods. Annu. Rev. Econ., 2020, vol. 12, pp. 317–353. doi: 10.1146/annurev-economics-080218-025711 

5.   Judd K.L. The parametric path method: an alternative to Fair–Taylor and L-B-J for solving perfect foresight models. J. Econ. Dyn. Control, 2002, vol. 26, no. 9-10, pp. 1557–1583. doi: 10.1016/S0165-1889(01)00085-9 

6.   Blanchard O., Fischer S. Lectures on macroeconomics. Cambridge, MA: MIT Press, 1989, 664 p. ISBN: 9780262022835 .

7.   Barro J.R., Sala-i-Martin X. Economic growth, 2nd edn. Cambridge, MA: MIT Press, 2003, 672 p. ISBN: 0262025531 .

8.   Aseev S., Kryazhimskii A. The Pontryagin maximum principle and optimal economic growth problems. Proc. Steklov Inst. Math., 2007, vol. 257, pp. 1–255. doi: 10.1134/S0081543807020010 

9.   Smith W.T. A closed form solution to the Ramsey model. J. Macroecon., 2006, vol. 6, no. 1, pp. 1–27. doi: 10.2202/1534-6005.1356 

10.   Lahiri S., Eckaus R.S., Babiker M. The effects of changing consumption patterns on the costs of emission restrictions. In: MIT Joint Program on the Science and Policy of Global Change. Cambridge, MA, 2000, report no. 64, 14 p.

11.   Melnikov N.B., O’Neill B.C., Dalton M.G. Accounting for household heterogeneity in general equilibrium economic growth models. Energy Econ., 2012, vol. 34, no. 5, pp. 1475–1483. doi: 10.1016/j.eneco.2012.06.010 

12.   Melnikov N.B., Gruzdev A.P., Dalton M.G., Weitzel M., O’Neill B.C. Parallel extended path method for solving perfect foresight models. Comput. Econ., 2021, vol. 58, no. 2, pp. 517–534. doi: 10.1007/s10614-020-10044-y 

13.   Boháček R., Kejak M. Projection methods for economies with heterogeneous agents. In: CERGE-EI Working Papers, WP258, Prague, 2005. 32 p.

14.   Kelley C.T. Iterative methods for linear and nonlinear equations. Philadelphia: SIAM, 1995, 179 p. ISBN: 0898713528 .

15.   Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathematical theory of optimal processes NY; London: John Wiley & Sons, 1962, 360 p. ISBN: 0470693819 . Original Russian text published in Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov. Moscow: Fizmatgiz Publ., 1961, 391 p.

16.   Abramowitz M., Stegun I.A. Handbook of mathematical functions. NY: Dover Publ., 1972, 1076 p. ISBN: 0486612724 .

17.   Long J., Plosser C.I. Real business cycles. J. Political Econ., 1983, vol. 91, no. 1, pp. 39–69. doi: 10.1086/261128 

18.   Stokey N., Lucas R. Recursive methods in economic dynamics. Cambridge, MA: Harvard University Press, 1989, 588 p. ISBN: 0674750969 .

19.   Chang F. The inverse optimal problem: A dynamic programming approach. Econometrica, 1988, vol. 56, no. 1, pp. 147–172. doi: 10.2307/1911845 

20.   Arystanbekov B.M., Melnikov N.B. Generalized Galerkin method for an infinite time-horizon economic growth problem. In: Proceedings of the International Conference “Optimal Control Theory and Applications” (Yekaterinburg, Russia, June 27–July 1, 2022), eds: T. F. Filippova, A. M. Tarasyev. Yekaterinburg: IMM UB RAS, 2022, pp. 281–285.

21.   Krasovskii A.A., Lebedev P.D., Tarasyev A.M. Bernoulli substitution in the Ramsey model: optimal trajectories under control constraints. Comput. Math. Math. Phys., 2017, vol. 57, no. 5, pp. 770–783. doi: 10.1134/S0965542517050050 

22.   Oberman A.M. Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal., 2006, vol. 44, no. 2, pp. 879–895. doi: 10.1137/S0036142903435235 

23.   Achdou Y., Han J., Lasry J.-M., Lions P.-L., Moll B. Income and wealth distribution in macroeconomics: A continuous-time approach. Rev. Econ. Stud., 2022, vol. 89, no. 1, pp. 45–86. doi: 10.1093/restud/rdab002 

24.   Smith W.T. Inspecting the mechanism exactly: A closed-form solution to a stochastic growth model. J. Macroecon., 2007, vol. 7, no. 1, pp. 1–31. doi: 10.2202/1935-1690.1524 

Cite this article as: B.M. Arystanbekov, N.B. Melnikov. Projection method for economic growth problems on an infinite time interval. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 3, pp. 17–29; Proceedings of the Steklov Institute of Mathematics (Suppl.), 2022, Vol. 319, Suppl. 1, pp. S54–S65.