Kh.A. Khachatryan, H.S. Petrosyan. On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator ... P. 201-214

A system of nonlinear integral equations with a noncompact monotone Hammerstein type matrix integral operator is studied on the positive half-line. For specific representations of matrix kernels and nonlinearities involved in the system, the class of vector nonlinear integral equations under consideration has applications in various areas of mathematical physics. In particular, such systems arise in the theory of radiative transfer in inhomogeneous media, in the kinetic theory of gases, and in mathematical biology. The existence of a nontrivial componentwise nonnegative and bounded solution is proved. In one important particular case, the integral asymptotic behavior of the constructed solution is also studied. At the end of the paper, specific examples of nonlinearities and matrix kernels that satisfy the conditions of the formulated theorems are given.

Keywords: monotonicity, bounded solution, iterations, convexity, nonlinearity, convergence

Received March 2, 2022

Revised March 30, 2022

Accepted April 11, 2021

Funding Agency: This work was supported by the Science Committee of the Republic of Armenia (project no. 21T-1A047).

Khachatur Aghavardovich Khachatryan, Dr. Phys.-Math. Sci., Prof., Yerevan State University, 0025 Yerevan, Republic of Armenia, e-mail: Khach82@rambler.ru, khachatur.khachatryan@ysu.am

Haykanush Samvelovna Petrosyan, Cand. Sci. (Phys.-Math.), Armenian National Agrarian University, 0009, Yerevan, Republic of Armenia, e-mail: Haykuhi25@mail.ru

REFERENCES

1.   Lancaster P. Theory of matrices. NY: Acad. Press, 1969, 316 p. Translated to Russian under the title Teoriya matrits, Moscow: Nauka Publ., 1973, 280 p.

2.   Sobolev V.V. The Milne problem for an inhomogeneous atmosphere. Dokl. Akad. Nauk SSSR, 1978, vol. 239, no. 3, pp. 558–561 (in Russian).

3.   Arabadzhyan L.G. An integral equation of transport theory in an inhomogeneous medium. Differ. Uravn., 1987, vol. 23, no. 9, pp. 1618–1622 (in Russian).

4.   Cercignani C. The Boltzmann equation and its applications. NY: Springer, 1988, 455 p. doi: 10.1007/978-1-4612-1039-9 .

5.   Khachatryan A.Kh., Khachatryan Kh.A. On solvability of one infinite system of nonlinear functional equations in the theory of epidemics. Eurasian Math. J., 2020, vol. 11, no. 2, pp. 52–64. doi: 10.32523/2077-9879-2020-11-2-52-64 

6.   Diekmann O. Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol., 1978, vol. 6, no. 2, pp. 109–130. doi: 10.1007/BF02450783 

7.   Sargan J. The distribution of wealth. Econometrica, 1957, vol. 25, no. 4, pp. 568–590. doi: 10.2307/1905384 

8.   Khachatryan K.A. On some systems of nonlinear integral Hammerstein-type equations on the semiaxis. Ukr. Math. J., 2010, vol. 62, no. 4, pp. 630–647. doi: 10.1007/s11253-010-0376-9 

9.   Sardaryan T.G., Terjyan T.E., Khachatryan K.A. On the solvability of one system of nonlinear Hammerstein-type integral equations on the semiaxis. Ukr. Mat. Zhur., 2017, vol. 69, no. 8, pp. 1107–1122 (in Russian).

10.   Khachatryan Kh.A., Petrosyan H.S. Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line. Russian Math. (Iz. VUZ), 2021, vol. 65, no. 1, pp. 27–46. doi: 10.3103/S1066369X21010035 

11.   Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis, vol. 1, 2. Mineola; NY: Dover Publ., 1999, 288 p. ISBN: 0486406830 . Original Russian text published in Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional’nogo analiza, Moscow: Nauka Publ., 1981, 544 p.

12.   Arabadzhyan L.G., Engibaryan N.B. Convolution equations and nonlinear functional equations. J. Soviet Math., 1987, vol. 36, no. 6, pp. 745–791. doi: 10.1007/BF01085507 

Cite this article as: Kh.A. Khachatryan, H.S. Petrosyan. On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 2, pp. 201–214.