V.I. Trofimov. On the Weiss conjecture. I ... P. 247-256

Let $\Gamma$ be a connected finite graph and $G$ a vertex-transitive group of automorphisms of $\Gamma$ such that the stabilizer $G_x$ in $G$ of a vertex $x$ of $\Gamma$ induces on the neighborhood $\Gamma(x)$ of $x$ a primitive permutation group $G_x^{\Gamma(x)}$. The Weiss conjecture says that, under this assumption, the order of $G_x$ is bounded from above by a number depending only on the degree $|\Gamma(x)|$ of $\Gamma$. In the work whose first part is the present paper we show that some results of the theory of finite groups can be used to provide unified considerations of a number of cases of the Weiss conjecture (including a number of cases not considered before). Although this first part is introductory, it makes possible to use certain previous results to confirm the Weiss conjecture for all primitive groups $G_x^{\Gamma(x)}$ different from groups of AS type and from groups of PA type (constructed on the basis of groups of AS type).

Keywords: graph, group of automorphisms, Weiss conjecture

Received October 29, 2021

Revised November 19, 2021

Accepted December 13, 2021

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. № 20-01-00456).

Trofimov Vladimir Ivanovich, Dr. Phys.-Math. Sci., Leading researcher, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Prof., Ural Federal University, Yekaterinburg, 620000 Russia,
e-mail: trofimov@imm.uran.ru

REFERENCES

1.   Chermak A. Quadratic action and the ${\mathcal P}(G,V)$-theorem in arbitrary characteristic. J. Group Theory, 1999, vol. 2, no. 1, pp. 1–13. doi: 10.1515/jgth.1999.002 

2.   Dixon J.D., Mortimer B. Permutation groups. NY: Springer-Verlag, 1996, 346 p. ISBN: 9781461207313 

3.   Kurzweil H., Stellmacher B. The theory of finite groups: an introduction. NY: Springer, 2004, 387 p. doi: 10.1007/b97433 

4.   Liebeck M.W., Praeger C.E., Saxl J. On the O’Nan–Scott theorem for finite primitive permutation groups. J. Austral. Math. Soc. (A), 1988, vol. 44, no. 3, pp. 389–396. doi: 10.1017/S144678870003216X 

5.   Meierfrankenfeld U. Eine Lösung des Pushing-up Problems für eine Klasse endlicher Gruppen. Dissertation. Bielefeld, 1986.

6.   Meierfrankenfeld U., Stellmacher B. The general FF-module theorem. J. Algebra, 2012, vol. 351, pp. 1–63. doi: 10.1016/j.jalgebra.2011.10.029 .

7.   Spiga P. On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss. J. Combinatorial Theory. Series A, 2011, vol. 118, no. 8, pp. 2257–2260. doi: 10.1016/j.jcta.2011.05.005 

8.   Spiga P. An application of the local C(G,T) theorem to a conjecture of Weiss. Bull. London Math. Soc., 2016, vol. 48, no. 1, pp. 12–18. doi: 10.1112/blms/bdv071 

9.   Trofimov V.I. Vertex stabilizers of locally projective groups of automorphisms of graphs: a summary. In: “Groups, Combinatorics and Geometry”, Durham 2001. NJ etc.: World Sci. Publ., 2003, pp. 313–326. doi: 10.1142/9789812564481_0019 

10.   van Bon J. Thompson–Wielandt-like theorems revisited. Bull. London Math. Soc., 2003, vol. 35, no. 1, pp. 30–36. doi: 10.1112/S0024609302001418 

11.   Weiss R.M. s-transitive graphs. In: “Algebraic methods in graph theory” (Szeged, 1978). Vol. II. Ser. Colloq. Math. Soc. Janos Bolyai, vol. 25. Amsterdam etc.: North-Holland, 1981, pp. 827–847.

12.   Weiss R.M. An application of p-factorization methods to symmetric graphs. Math. Proc. Phil. Soc., 1979, vol. 85, no. 1, pp. 43–48. doi: 10.1017/S030500410005547X 

Cite this article as: V.I. Trofimov. On the Weiss Conjecture. I, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 1, pp. 247–256; Proc. Steklov Inst. Math. (Suppl.), 2022, Vol. 319, Suppl. 1, pp. S281–S290.