We study an infinite periodic group $G$ with involutions that coincides with the set-theoretic union of a collection of proper locally cyclic subgroups with trivial pairwise intersections. It is proved that if $G$ contains an elementary subgroup $E_8$, then either $G$ is locally finite (and its structure is described) or its subgroup $O_2(G)$ is elementary and strongly isolated in $G$. If $G$ has a finite element of order greater than 2 and the $2$-rank of $G$ is not $2$, then $G$ is locally finite, and its structure is described.
Keywords: periodic group, completely splittable group, $2$-rank of a group, strongly isolated subgroup, finite element
Received October 10, 2021
Revised December 16, 2021
Accepted December 20, 2021
Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00566 A) and by the Krasnoyarsk Mathematical Center, which is financed by the Ministry of Science and Higher Education of the Russian Federation within the project for the creation and development of regional centers for mathematical research and education (agreement no. 075-02-2020-1534/1).
Anatoly Ilyich Sozutov, School of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: sozutov_ai@mail.ru
REFERENCES
1. Kontorowitch P. Groups with a basis of partition. I. Rec. Math. [Mat. Sbornik] N.S., 1943, vol. 12 (54), no. 1, pp. 56–70 (in Russian).
2. Starostin A.I. Partitions and centralizers in the theory of finite groups. [Abstr. Diss. Doc. Sci. (Phys.–Math.)] Math. Notes, 1969, vol. 6, no. 4, pp. 754–760. doi: 10.1007/BF01093815
3. Busarkin V.M., Gorchakov Yu.M. Konechnye rascheplyaemye gruppy [Finite groups that admit partitions]. Moscow: Nauka Publ., 1968, 112 p.
4. Miller G.A. Groups in which all the operators are contained in a series of subgroups such that any two have only identity in common. Bull. Amer. Math. Soc., 1906, vol. 12, no. 9, pp. 446–449. doi: 10.1090/S0002-9904-1906-01370-2
5. Young J.W. On the partitions of a group and the resulting classification. Bull. Amer. Math. Soc., 1927, vol. 33, no. 4, pp. 453–461. doi: 10.1090/S0002-9904-1927-04405-6
6. Jordan C. Recherches sur les substitutions. J. Math. Pures Appl., Ser. 2, 1872, vol. 17, pp. 351–367.
7. Dickson L.E. Linear groups: with an exposition of the Galois field theory. Leipzig: B.G. Teubner, 1901, 312 p. ISBN: 0486604829 .
8. Frobenius G. Über auflösbare gruppen. IV. Berl. Ber., 1901, pp. 1216–1230.
9. Starostin A.I. On Frobenius groups. Ukr. Mat. Zh., 1971, vol. 23, no. 5, pp. 629–639 (in Russian).
10. Kontorowitch P. On the decomposition of a group into a direct sum of subgroups. Rec. Math. [Mat. Sbornik] N.S., I, 1939, vol. 5 (47), no. 2, pp. 289–296; II, 1940, vol. 7 (49), no. 1, pp. 27–33 (in Russian).
11. Kontorovitch P. Groups with a basis of partition. Rec. Math. [Mat. Sbornik] N.S., II, 1946, vol. 19 (61), no. 2, pp. 287–308; III, 1948, vol. 22 (64), no. 1, pp. 79–100; IV, 1950, vol. 26 (68), no. 2, pp. 311–320 (in Russian).
12. Kontorovich P.G., Pekelis A.S., Starostin A.I. Structural issues of group theory. Mat. Zap. Uralsk. Univ., 1961, vol. 3, no. 1, pp. 3–50 (in Russian).
13. Starostin A.I. The structure of a completely partitionable kernel of locally finite groups. Uch. Zap. Uralsk. Univ., 1959, vol. 23, no. 1, pp. 29–34 (in Russian).
14. Starostin A.I. Periodic locally solvable, completely partitionable groups. Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 2, pp. 168–177 (in Russian).
15. Busarkin V.M., Starostin A.I. Locally finite groups with a partition. Mat. Sb. (N.S.), 1963, vol. 62 (104), no. 3, pp. 275–294 (in Russian).
16. Starostin A.I. The kernel of a partition of locally finite groups. Mat. Sb. (N.S.), 1965, vol. 66 (108), no. 4, pp. 551–567 (in Russian).
17. Suzuki M. On the finite group with a complete partition. J. Math. Soc. Japan, 1950, vol. 2, no. 1-2, pp. 165–185. doi: 10.2969/jmsj/00210165
18. Baer R. Einfache Partitionen nicht-einfacher Gruppen. Math. Z., 1961, vol. 77, no. 1, pp. 1–37. doi: 10.1007/BF01180159
19. Kegel O.H. Lokal endliche Gruppen mit nicht-trivialer Partition. Arch. Math., 1962, vol. 13, pp. 10–28. doi: 10.1007/BF01650044 .
20. Gorchakov Yu.M. On infinite Frobenius groups. Algebra i Logika. Sem., 1965, vol. 4, no. 1, pp. 15–29 (in Russian).
21. Shunkov V.P. A generalization of the theorem of Frobenius on periodic groups. Algebra i Logika, 1967, vol. 6, no. 3, pp. 113–124 (in Russian).
22. Sozutov A.I., Shunkov V.P. On a generalization of Frobenius’ theorem to infinite groups. Math. USSR-Sb., 1976, vol. 29, no. 4, pp. 441–451. doi: 10.1070/SM1976v029n04ABEH003680
23. Sozutov A.I. On the structure of the noninvariant factor in some Frobenius groups. Siberian Math. J., 1994, vol. 35, no. 4, pp. 795–801. doi: 10.1007/BF02106623
24. Adjan S.I. The Burnside problem and identities in groups. Berlin: Springer-Verlag, 1979, 311 p. Original Russian text published in Adjan S.I. Problema Bernsaida i tozhdestva v gruppakh, Moscow: Nauka Publ., 1975, 336 p.
25. Ol’shanskii A.Y. Geometry of defining relations in groups. Dordrecht: Springer, 1991, 505 p. doi: 10.1007/978-94-011-3618-1 . Original Russian text published in Ol’shanskii A.Y. Geometriya opredelyayushchikh sootnoshenii v gruppakh, Moscow: Nauka Publ., 1989, 448 p.
26. Adian S.I. Periodic products of groups. Proc. Steklov Inst. Math., 1979, vol. 142, pp. 1–19.
27. Olshanskii A.Yu. Groups of bounded period with subgroups of prime order. Algebra Logika, 1982, vol. 21, no. 5, pp. 553–618 (in Russian).
28. Kourovskaya tetrad’: Nereshennye voprosy teorii grupp [The Kourovka notebook: Unsolved problems of group theory]. Edited by V. D. Mazurov and E. I. Khukhro, 15th ed., Novosibirsk: IM RAN Publ., 2002, 172 p. ISBN: 5-94356-058-0 .
29. Sozutov A.I. Groups with the quasicyclic centralizer of a finite involution. Sib. Math., 2016, vol. 57, no. 5, pp. 881–883. doi: 10.1134/S0037446616050189
30. Sozutov A.I. Groups with finite Engel element. Algebra and Logic, 2019, vol. 58, no. 3, pp. 254–267. doi: 10.1007/s10469-019-09544-0
31. Sozutov A.I., Suchkov N.M., Suchkova N.G. Beskonechnye gruppy s involyutsiyami [Infinite groups with involutions]. Krasnoyarsk: Sib. Fed. Univ. Publ., 2011, 149 p. ISBN: 978-5-7638-2127-7 .
32. Popov A.M., Sozutov A.I., Shunkov V.P. Gruppy s sistemami frobeniusovykh podgrupp [Groups with Frobenius subgroup systems]. Krasnoyarsk: KGTU Publ., 2004, 210 p. ISBN: 5-7636-0654-X .
Cite this article as: A.I. Sozutov. On periodic completely splittable groups, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 1, pp. 239–246.