O.V. Kravtsova, D.S. Skok. The spread set method for the construction of finite quasifields ... P. 164-181

The weakening of the field axioms leads to more general algebraic systems such as near-fields, semifields, and quasifields. The tools for studying these systems are more difficult to use. The spread set method is based on recording multiplication in a quasi-field as a linear transform in the associated linear space. The transition to matrix operations enables the effective application of the method for studying the finite translation planes and their coordinatizing quasifields. We obtain a characteristic property of a spread set for a near-field of dimension two over the kernel. The result is applied to two non-isomorphic near-fields of order 25 and quasifields of order 9. The existence of quasifields with a multiplicative Moufang loop is also discussed. It is proved by the spread set method that a non-associative Moufang quasifield of order 25 does not exist. We list some questions of the theory of finite semifields and semifield projective planes where the spread set method may be useful. This method is also effective in computer constructions of quasifields and translation planes.

Keywords: quasifield, near-field, semifield, spread set, translation plane

Received November 10, 2021

Revised December 20, 2021

Accepted December 27, 2021

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00566 А).

Olga Vadimovna Kravtsova, Cand. Phys.-Math. Sci., Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: ol71@bk.ru

Daria Sergeevna Skok, Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: skokdarya@yandex.ru

REFERENCES

1.   Dickson L.E. Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc., 1906, vol. 7, no. 3, pp. 370–390. doi: 10.1090/S0002-9947-1906-1500755-5 

2.   Veblen O., Maclagan-Wedderburn J.H. Non-Desarguesian and non-Pascalian geometries. Trans. Amer. Math. Soc., 1907, vol. 8, no. 3, pp. 379–388. doi: 10.1090/S0002-9947-1907-1500792-1 

3.   Hall M. The theory of groups. Providence: AMS Chelsea, 1959, 434 p. ISBN: 978-0-8218-1967-8 . Translated to Russian under the title Teoriya grupp. Moscow: Inostr. Lit. Publ., 1962, 468 p.

4.   Hughes D.R., Piper F.C. Projective planes. NY: Springer, 1973, 292 p. ISBN: 0387900438 .

5.   Dickson L.E. On finite algebras. Nachr. Akad. Wiss. Göttingen, Math.-Phys., 1905, vol. 1905, pp. 358–393. Available on: https://eudml.org/doc/58621 

6.   Zassenhaus H. Uber endliche Fastkörper. Abh. Math. Sem. Hamburg, 1935, vol. 11, pp. 187–220. doi: 10.1007/BF02940723 .

7.   Hall M. Projective planes. Trans. Amer. Math. Soc., 1943, vol. 54, no. 2, pp. 229–277. doi: 10.1090/S0002-9947-1943-0008892-4 

8.   Johnson N., Jha V., Biliotti M. Handbook of finite translation planes. NY: Chapman and Hall/CRC, 2007, 888 p. doi: 10.1201/9781420011142 

9.   Kravtsova O.V. On automorphisms of semifields and semifield planes. Siberian Electronic Mathematical Reports, 2016, vol. 13, pp. 1300–1313. doi: 10.17377/semi.2016.13.102 

10.   Levchuk V.M., Kravtsova O.V. Problems on structure of finite quasifields and projective translation planes. Lobachevskii J. Math., 2017, vol. 38, no. 4, pp. 688–698. doi: 10.1134/S1995080217040138 

11.   Maduram D.M. Matrix representation of translation planes. Geom. Dedicata, 1975, vol. 4, no. 2, pp. 485–492. doi: 10.1007/BF00148776 

12.   Podufalov N.D. On spread sets and collineations of projective planes. Contem. Math., 1992, vol. 131, part 1, pp. 697–705. doi: 10.1090/conm/131.1/1175813 

13.   Biliotti M., Jha V., Johnson N.L. Foundations of translation planes. Boca Raton: CRC Press, 2001, 558 p. doi: 10.1201/9781482271003 

14.   Mäurer  H. Die affine projektivitätengruppe der Hallebenen [The affine group of projectivities of the Hall planes]. Aequationes mathematicae, 1987, vol. 32, no. 1, pp. 271–273. Available on: https://eudml.org/doc/137191 

15.   Nesbitt-Stobert S.B., Garner C.W.L. A direct proof that all Hall planes of the same finite order are isomorphic. Riv. Mat. Univ. Parma, 1986, vol. 12, no. 4, pp. 241–247. Available on: http://rivista.math.unipr.it/fulltext/1986-12/1986-12-241.pdf 

16.   Wähling H. Theorie der fastkörper. Ser. Thales Monographs, vol. 1. Essen: Thales-Verlag, 1987, 393 p. ISBN: 3889082319 .

17.   Kravtsova O.V., Levchuk V.M. Questions of the structure of finite near-fields. Trudy Inst. Mat. i Mekh. UrO RAN, 2019, vol. 25, no. 4, pp. 107–117 (in Russian). doi: 10.21538/0134-4889-2019-25-4-107-117 

18.   Grishkov A.N., Zavarnitsyn A.V. Lagrange’s theorem for Moufang loops. Math. Proc. Phil. Soc., 2005, vol. 139, no. 1, pp. 41–57. doi: 10.1017/S0305004105008388 

19.   Grishkov A.N., Zavarnitsyn A.V. Sylow’s theorems for Moufang loops. J. Algebra, 2009, vol. 321, no. 7, pp. 1813–1825. doi: 10.1016/j.jalgebra.2008.08.035 

20.   Yakovleva T.N. Questions of construction of quasifields with associative powers. The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 29, pp. 107–119 (in Russian). doi: 10.26516/1997-7670.2019.29.107 .

21.   Chein O. Moufang loops of small order. I. Trans. Amer. Math. Soc., 1974, vol. 188, no. 2, pp. 31–51. doi: 10.1090/S0002-9947-1974-0330336-3 

22.   Knuth D. Finite semifields and projective planes. J. Algebra, 1965, vol. 2, no. 2, pp. 182–217. doi: 10.1016/0021-8693(65)90018-9 

23.   Kantor W. Commutative semifields and symplectic spreads. J. Algebra, 2003, vol. 270, no. 1, pp. 96–114. doi: 10.1016/S0021-8693(03)00411-3 

24.   Lavrauw M., Polverino O. Finite semifields. In: Current research topics in Galois geometry, L. Storme and J. De Beule (eds), NOVA Academic Publishers, 2011, chapter 6, pp. 131–160. Available on: http://hdl.handle.net/1854/LU-2152960 

25.   Wene G.P. On the multiplicative structure of finite division rings. Aeq. Math., 1991, vol. 41, pp. 222–233. doi: 10.1007/BF02227457 

26.   Hentzel I.R., Rúa I.F. Primitivity of finite semifields with 64 and 81 elements. Internat. J. Algebra and Computation, 2007, vol. 17, no. 7, pp. 1411–1429. doi: 10.1142/S0218196707004220 

27.   Kravtsova O.V. On alternating subgroup A5 in autotopism group of finite semifield plane. Sib. Elektron. Mat. Izv., 2020, vol. 17, pp. 47–50. doi: 10.33048/semi.2020.17.004 

28.   Oyama T. On quasifields. Osaka J. Math., 1985, vol. 22, no. 1, pp. 35–54. Available on: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-2...

Cite this article as: O.V. Kravtsova, D.S. Skok. The spread set method for the construction of finite quasifields, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 1, pp. 164–181.