L.A. Kalyakin. Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet ... P. 111-126

A system of two nonlinear differential equations with slowly varying coefficients is considered. The system corresponds to one of the models of nuclear spins in antiferromagnets. When written in slow time, the equations contain a small parameter at the derivatives. In the leading terms of the asymptotics with respect to the small parameter, the problem is reduced to a system of algebraic equations. Their roots depend on the slow time. We study solutions whose asymptotics is restructured from one root to another. Such restructuring occurs under a suitable change in the coefficients of the original equations and is identified with a dynamic saddle-node bifurcation. A narrow transition layer appears near the moment of transition (bifurcation), where the solution changes rapidly. The main results are related to the construction of the asymptotics with respect to the small parameter in this layer. To construct the asymptotics, the matching method using three scales is used.

Keywords: equilibrium, dynamic bifurcation, small parameter, asymptotics

Received November 10, 2021

Revised November 24, 2021

Accepted November 29, 2021

Funding Agency: This work was supported by the Russian Science Foundation (project no. 20-11-19995).

Leonid Anatol’evich Kalyakin, Dr. Phys.-Math. Sci., Prof., Institute of Mathematics of Ufa Federal Research Center of Russian Academy of Sciences, Ufa, 450008 Russia, e-mail: klenru@mail.ru

REFERENCES

1.   Borich M.A., Bunkov Y.M., Kurkin M.I., Tankeyev A.P. Nuclear magnetic relaxation induced by the relaxation of electron spins. Jetp Lett., 2017, vol. 105, no. 1, pp. 21–25. doi: 10.1134/S002136401701009X 

2.   Kalyakin L.A. Analysis of a mathematical model for nuclear spins in an antiferromagnet. Nelin. Dinam., 2018, vol. 14, no. 2, pp. 217–234. doi: 10.20537/nd180206 

3.   Kalyakin L.A. Asymptotics of the solution for the system of Landau–Lifsitz equations under saddle-node dynamical bifurcation. Algebra i Analiz, 2021, vol. 33, no. 2, pp. 56–81 (in Russian).

4.   Kalyakin L.A. Asymptotics of the solution of a differential equation in a saddle–node bifurcation. Comput. Math. and Math. Phys., 2019, vol. 59, no. 9, pp. 1454–1469. doi: 10.1134/S0965542519090100 

5.   Vassilyeva A.B., Butuzov V.F. Asymptoticheckie razlozhenya reshenyi singul’arno vozmutshennykh uravnenyi [Asymptotic expansions of solutions of singularly perturbed equations]. Moscow: Nauka Publ., 1990, 207 p.

6.   Il’in A.M. Matching of asymptotic expansions of solutions of boundary value problems. Providence: American Mathematical Society, 1992, 281 p. ISBN: 978-0-8218-4561-5 . Original Russian text published in Il’in A.M. Soglasovanie asimtoticheskikh razlozhenii reshenii kraevykh zadach. Moscow: Nauka Publ., 1989, 336 p.

7.   Berglund N. Dynamic bifurcations: hysteresis, scaling laws and feedback control. 1999. 12 p. Available on: https://arxiv.org/pdf/chao-dyn/9912008.pdf 

8.   Kiselev O.M. Hard loss of stability in Painleve-2 equation. J. Nonlinear Math. Physics, 2001, vol. 8, no. 1, pp. 65–95. doi: 10.2991/jnmp.2001.8.1.8 

9.   Diminnie D., Haberman H. Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant. Physica D: Nonlinear Phenomena, 2002, vol. 162, no. 1-2, pp. 34–52. doi: 10.1016/S0167-2789(01)00373-6 

10.   Suleimanov B.I. On some typical features of motion with damping in the case of smooth inhomogeneity. Dokl. Math., 2006, vol. 73, no. 2, pp. 299–301. doi: 10.1134/S1064562406020384 

11.   Butuzov V.F. On contrast structures with a multizonal interior layer. Model. Anal. Inform. Syst., 2017, vol. 24, no. 3, pp. 288–308 (in Russian). doi: 10.18255/1818-1015-2017-3-288-308 

12.   Mishchenko E.F., Kolesov Yu.S., Kolesov A.Yu., Rozov N.Kh. Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmushchennykh sistemakh [Periodic movements and bifurcation processes in singularly perturbed systems]. Moscow: Nauka Publ., 1995, 336 p. ISBN: 5-02-015129-7 .

13.   Lebovitz N.R., Schaar R.J. Exchange of stabilities in autonomous systems. Studies Appl. Math., 1975, vol. 54, no. 3, pp. 229–260. doi: 10.1002/sapm1975543229 

14.   Lebovitz N.R., Schaar R.J. Exchange of stabilities in autonomous systems—II. Vertical bifurcation. Studies Appl. Math., 1977, vol. 56, no. 1, pp. 1–50. doi: 10.1002/sapm19775611 

15.   Bautin N.N., Leontovich E.A. Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti [Methods and techniques of a qualitative study of dynamic systems on the plane]. Moscow: Nauka Publ., 1990, 488 p.

16.   Orlov V.N. Criterion for the existence of mobile singular points of solutions of the differential equation Riccati. Vestn. SamGU — Estestv. ser., 2006, vol. 46, no. 6-1, pp. 64–69.

17.   Neishtadt A.I. Persistence of stability loss for dynamical bifurcations. II. Differ. Equ., 1988, vol. 24, no. 2, pp. 171–176.

18.   Baer S.M., Erneux T., Rinzel J. The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math., 2006, vol. 49, no. 1, pp. 55–71. doi: 10.1137/0149003 

Cite this article as: L.A. Kalyakin. Asymptotics of a dynamic saddle-node bifurcation for the nuclear spin model in an antiferromagnet, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 1, pp. 111–126.