MSC: 34K06
DOI: 10.21538/0134-4889-2025-31-4-106-114
The Riccati equation method is used to establish oscillation and non-oscillation criteria for second order linear nonhomogeneous functional-differential equations. We show that the obtained oscillation criterion is a generalization of J. S. W. Wong’s oscillation criterion for second order linear nonhomogeneous ordinary differential equations. Two examples, demonstrating the aptitude of the obtained criteria, are presented.
Keywords: Riccati equations, functional-differential equations, oscillation, interval oscillation, non-oscillation
REFERENCES
1. Berezansky L., Braverman E. Some oscillation problems for a second order linear delay differential equations, Mathematical Analysis and Applications, 1998, vol. 220, no. 2, pp. 719–740. https://doi.org/10.1006/jmaa.1997.5879
2. Berezansky L., Braverman E. Oscillation of a second order delay differential equations with middle term, Applied Mathematics Letters, 2000, vol. 13, no. 2, pp. 21–25.
https://doi.org/10.1016/S0893-9659(99)00160-3
3. Džurina J. Oscillation theorems for second order advanced neutral differential equations, Tatra Mt. Math. Publ., 2011, vol. 48, no. 1, pp. 61–71. https://doi.org/10.2478/v10127-011-0006-4
4. Grigorian G.A. On two comparison tests for second-order linear ordinary differential equations, Differ. Equ., 2011 vol. 47 no. 9, pp. 1237–1252. https://doi.org/10.1134/S0012266111090023
5. Grigorian G.A. Oscillation criteria for the second order linear functional-differential equations with locally integrable coefficients, Sarajevo J. Math, 2018, vol. 14 (27), no. 1, pp. 71–86. https://doi.org/10.5644/SJM/14.1.07
6. Grigorian G.A. Oscillation and non-oscillation criteria for linear nonhomogeneous systems of two first-order ordinary differential equations, J. Math. Anal. Appl., 2022, vol. 507 no. 1, pp. 125734. https://doi.org/10.1016/j.jmaa.2021.125734
7. Grigorian G.A. The Cauchy problem for quasilinear systems of functional differential equations, Sarajevo J. Math., 2022, vol. 18 no. 2, pp. 265–271. https://doi.org/10.5644/SJM.18.02.07
8. Kong Q., Pašić M. Second-order differential equations: some significant results due to James S. W. Wong, Differ. Equ. Appl., 2014, vol. 6 no. 1, pp. 99–163. https://doi.org/10.7153/dea-06-07
9. Li T., Rogovchenko Yu. V., Zheng Ch. Oscillation of Second-Order Neutral Differential Equations, Funkcialaj Ekvacioj, 2013, vol. 56, no. 1, pp. 111–120. https://doi.org/10.1619/fesi.56.111
10. Ohrishka J. Oscillation of second-order linear delay differential equations, Central European J. Math., 2008, vol. 6 no. 3, pp. 439–452. https://doi.org/10.2478/s11533-008-0023-x
11. Opluštil Z., Šremr. J. Some oscillation criteria for the second-order linear delay differential equation, Mathematica Bohemica, 2011, vol. 136 no. 2, pp. 195–204. https://doi.org/10.21136/MB.2011.141582
12. Takaŝi K., Marić V. On a class of functional differential equations, Having Slowly Varying Solutions, Publications de l’Institut Mathematique, 2006, vol. 80 (94),
pp. 207–217. https://doi.org/10.2298/PIM0694207K
13. Wong James. S. W. Oscillation criteria for a forced second-order linear differential equation, J. Math. Anal. Appl., 1999, vol. 231 no. 1, pp. 235–240. https://doi.org/10.1006/jmaa.1998.6752
Received June 27, 2025
Revised August 12, 2025
Accepted August 18, 2025
Gevorg Avagovich Grigorian, Cand. Sci. (Phys.-Math.), PhD, Institute of Mathematics of NAS of Armenia, Yerevan, e-mail: mathphys2@instmath.sci.am
Cite this article as: G.A. Grigorian. Oscillation and non-oscillation criteria for second order linear nonhomogeneous functional-differential equations. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 4, pp. 106–114.
Русский
Г.А. Григорян. Критерии колебательности и неколебательности для линейных неоднородных функционально-дифференциальных уравнений второго порядка
Метод уравнения Риккати применяется для установления критериев осцилляционности и неосцилляционности для линейных неоднородных функционально-дифференциальных уравнений второго порядка. Показано, что полученный критерий осцилляционности является обобщением критерия осцилляционности Дж. С. В. Вонга для линейных неоднородных обыкновенных дифференциальных уравнений второго порядка. Приведены два примера, демонстрирующие применимость полученных критериев.
Ключевые слова: уравнения Риккати, функционально-дифференциальные уравнения, колебание, интервальное колебание, отсутствие колебания.