Е.К. Костоусова. О полиэдральном методе синтеза управлений в задаче целевого уклонения в линейных многошаговых системах ... С. 101-114

УДК 517.977

MSC: 93C41, 93C55, 93B50, 93B40, 52B12

DOI: 10.21538/0134-4889-2021-27-3-101-114

Рассматривается задача конфликтного управления для линейной многошаговой системы с двумя управлениями, где цель одного управления состоит в приведении траектории на заданное целевое множество в заданный конечный момент времени; цель другого противоположна. Здесь возникают две подзадачи: задача сближения и задача уклонения. Предполагается, что целевое множество является невырожденным параллелепипедом, а оба управления стеснены параллелотопозначными ограничениями. Работа посвящена развитию быстрого полиэдрального метода синтеза управлений в задаче уклонения на основе построения параллелотопозначных трубок. Исследуются две схемы построения трубок такого рода и соответствующих стратегий управления для уклонения от цели. Доказано, что при определенных условиях обе схемы позволяют получить частные решения задачи целевого уклонения. При этом наложенные здесь условия несколько слабее, чем были анонсированы ранее. Более того, для обоих случаев найдены гарантированные оценки снизу для величины отклонения траектории от сечений трубки. Последнее сечение по построению содержит целевое множество. Проведено сравнение локальных свойств обеих схем.

Ключевые слова: управляемая система, системы с неопределенностью, задача уклонения, полиэдральные методы, параллелотопы

СПИСОК ЛИТЕРАТУРЫ

1.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. New York: Springer, 1988. 517 p.

2.   Kurzhanski A.B., Valyi I. Ellipsoidal calculus for estimation and control. Boston: Birkhauser, 1997. 321 p.

3.   Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes: theory and computation. Basel: Birkhauser, 2014. 445 p. (Systems & Control: Foundations & Applications, Book 85). doi: 10.1007/978-3-319-10277-1 

4.   Taras’ev A.M., Tokmantsev T.B., Uspenskii A.A., Ushakov V.N. On procedures for constructing solutions in differential games on a finite interval of time // J. Math. Sci. 2006. Vol. 139, no. 5. P. 6954–6975. doi: 10.1007/s10958-006-0400-7 

5.   Bertsekas D.P., Rhodes I.B. On the minimax reachability of target sets and target tubes // Automatica. 1971. Vol. 7, no. 2. P. 233–247. doi: 10.1016/0005-1098(71)90066-5 

6.   Зарх М.А., Пацко B.C. Стратегия второго игрока в линейной дифференциальной игре // Прикл. математика и механика. 1987. Т. 51, вып. 2. С. 193–200.

7.   Botkin N., Martynov K., Turova V., Diepolder J. Generation of dangerous disturbances for flight systems // Dynamic Games and Applications. 2019. Vol. 9, no. 3. P. 628–651. doi: 10.1007/s13235-018-0259-5 

8.   Esterhuizen W., Wang Q. Control design with guaranteed transient performance: An approach with polyhedral target tubes // Automatica. 2020. Vol. 119. Art. no. 109097. doi: 10.1016/j.automatica.2020.109097 

9.   Матвийчук А.Р., Ухоботов В.И., Ушаков А.В., Ушаков В.Н. Задача о сближении нелинейной управляемой системы на конечном промежутке времени // Прикл. математика и механика. 2017. Т. 81, № 2. С. 165–187.

10.   Черноусько Ф.Л. Оценивание фазового состояния динамических систем. Метод эллипсоидов. М.: Наука, 1988. 319 с.

11.   Filippova T.F. Control and estimation for a class of impulsive dynamical systems // Ural Math. J. 2019. Vol. 5, no. 2. P. 21–30. doi: 10.15826/umj.2019.2.003 

12.   Kostousova E.K. Outer polyhedral estimates for attainability sets of systems with bilinear uncertainty // J. Appl. Math. Mech. 2002. Vol. 66, no. 4. P. 547–558. doi: 10.1016/S0021-8928(02)00073-4 

13.   Kurzhanskiy A.A., Varaiya P. Reach set computation and control synthesis for discrete-time dynamical systems with disturbances // Automatica. 2011. Vol. 47, no. 7. P. 1414–1426. doi:10.1016/j.automatica.2011.02.009 

14.   Kostousova E.K. On target control synthesis under set-membership uncertainties using polyhedral techniques // IFIP Advances in Information and Communication Technology. 2014. Vol. 443. P. 170–180. doi: 10.1007/978-3-662-45504-3_16 

15.   Kostousova E.K. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints // Discrete and Continuous Dynamical Systems. 2018. Vol. 38, no. 12. P. 6149–6162. doi: 10.3934/dcds.2018153 

16.   Martynov K., Botkin N., Turova V., Diepolder J. Real-time control of aircraft take-off in windshear. Part I: Aircraft model and control schemes // IEEE Xplore Digital Library. 2017 25th Mediterranean Conference on Control and Automation (MED 2017), July 3–6, 2017, Valletta, Malta: Proc. P. 277–284. doi: 10.1109/MED.2017.7984131 

17.   Martynov K., Botkin N., Turova V., Diepolder J. Quick construction of dangerous disturbances in conflict control problems // Annals of the International Society of Dynamic Games. 2020. Vol. 17. P. 3–24. doi: 10.1007/978-3-030-56534-3_1 

18.   Kostousova E.K. On a polyhedral method for solving an evasion problem for linear discrete-time systems // IEEE Xplore Digital Library. 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) (STAB), June 3-5, 2020, Moscow, Russia: proceedings. 4 p. doi: 10.1109/STAB49150.2020.9140471 

19.   Ланкастер П. Теория матриц. М.: Наука, 1982. 272 с.

20.   Гантмахер Ф.Р. Теория матриц. М.: Физматлит, 2010. 560 с.

Поступила 23.03.2021

После доработки 18.05.2021

Принята к публикации 24.05.2021

Костоусова Елена Кирилловна
д-р физ.-мат. наук
ведущий науч. сотрудник
Институт математики и механики им. Н.Н. Красовского УрО РАН
г. Екатеринбург
e-mail: kek@imm.uran.ru

Ссылка на статью: Е.К. Костоусова. О полиэдральном методе синтеза управлений в задаче целевого уклонения в линейных многошаговых системах // Тр. Ин-та математики и механики УрО РАН. 2021. Т. 27, № 3. С. 101-114

English

E.K. Kostousova. On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems

A conflict-control problem is considered for a linear discrete-time system with two controls, where the aim of the first control is to steer the trajectory of the system to a given target set, whereas the aim of the second control is opposite. Two subproblems arise here, namely, an approach problem and an evasion problem. It is assumed that the target set is a nondegenerate parallelepiped and both controls are subject to given parallelotope-valued constraints. The paper is devoted to the development of a fast polyhedral method of control synthesis in the evasion problem based on the construction of parallelotope-valued tubes. Two construction schemes for such tubes and the corresponding control strategies of avoiding the target set are studied. It is proved that under certain conditions both schemes provide particular solutions to the target evasion problem. The conditions imposed here are somewhat weaker than previously announced. Moreover, for both cases, guaranteed lower bounds are found for the deviation of the trajectory from the tube cross-sections. Here the last cross-section contains the target set by construction. The local properties of the schemes are compared.

Keywords: control system, systems with uncertainties, evasion problem, polyhedral methods, parallelotopes

Received March 23, 2021

Revised May 18, 2021

Accepted May 24, 2021

Elena Kirillovna Kostousova, Dr. Phys.-Math. Sci., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: kek@imm.uran.ru

Cite this article as: E.K. Kostousova. On the polyhedral method of control synthesis in the problem of target evasion in discrete-time systems, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 3, pp. 101–114. 

[References -> on the "English" button bottom right]