УДК 512.542
MSC: 20D10; 20D35
DOI: 10.21538/0134-4889-2021-27-1-268-272
Full text
This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics
We describe the structure of finite groups with $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups when $\mathfrak{F}$ is a subgroup-closed saturated superradical formation containing all nilpotent groups. We prove that groups with absolutely $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups are soluble when $\mathfrak{F}$ is a subgroup-closed saturated formation containing all nilpotent groups.
Keywords: finite group, primary cyclic subgroup, subnormal subgroup, abnormal subgroup, derived subgroup
REFERENCES
1. Huppert B. Endliche Gruppen I. Berlin: Springer-Verl., 1967, 793 p.
2. Skiba A. N. On some results in the theory of finite partially soluble groups. Commun. Math. Stat., 2016, vol. 4, no. 3, pp. 281–309. doi: 10.1007/s40304-016-0088-z
3. Monakhov V. S. Finite groups with abnormal and $\mathfrak U$-subnormal subgroups. Sib. Math. J., 2016, vol. 57, no. 2, pp. 352–363. doi: 10.1134/S0037446616020178
4. Monakhov V. S., Sokhor I. L. Finite groups with formation subnormal primary subgroups. Sib. Math. J., 2017, vol. 58, no. 4, pp. 663–671. doi: 10.1134/S0037446617040127
5. Ballester-Bolinches A., Ezquerro L. M. Classes of finite groups. Dordrecht: Springer-Verl., 2006, 381 p.
6. Vdovin E. P. Carter subgroups of finite groups. Sib. Adv. Math., 2009, vol. 19, no. 1, pp. 24–74. doi: 10.3103/S1055134409010039
7. Monakhov V. S. Schmidt subgroups, their existence and some applications. Proceedings of Ukrainian Mathematical Congress–2001, Inst. Mat. NAN Ukrainy Publ., Kyiv, 2002, pp. 81–90 (in Russian).
8. Semenchuk V.N. Soluble $\mathfrak{F}$-radical formations. Math. Notes., 1996, vol. 59, no. 2, pp. 261–266 (in Russian).
9. The GAP Group: GAP — Groups, Algorithms, and Programming. Ver. 4.11.0 released on 29 February 2020. Available at: http://www.gap-system.org
10. Vasil’ev A. F., Melchenko A. G. Finite groups with absolutely formationally subnormal Sylow subgroups. Probl. Fiz. Math. Tekh., 2019, no. 4 (41), pp. 44–50 (in Russian).
Received October 19, 2020
Revised January 15, 2021
Accepted January 25, 2021
Irina Leonidovna Sokhor, Can. Phys.-Math. Sci., Doc., Brest State A.S.Pushkin University, 224000 Brest, Belarus, e-mail: irina.sokhor@gmail.com
Cite this article as: I.L. Sokhor, Continuation of the theory of $E_\mathfrak{F}$-groups, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2021, vol. 27, no. 1, pp. 268–272.
Русский
И.Л. Сохор. Развитие теории конечных $E_\mathfrak{F}$-групп
Описана структура конечных групп с $\mathfrak{F}$-субнормальными или самонормализуемыми примарными циклическими подгруппами в случае, когда $\mathfrak{F}$ - наследственная насыщенная сверхрадикальная формация, содержащая все нильпотентные группы. Доказано, что группы с абсолютно $\mathfrak{F}$-субнормальными или самонормализуемыми примарными циклическими подгруппамии разрешимы, если $\mathfrak{F}$ - наследственная насыщенная формация, содержащая все нильпотентные группы.
Ключевые слова: конечная группа, примарная циклическая подгруппа, субнормальная подгруппа, абнормальная подгруппа, коммутант