E.T. Larin. Stable tracking under incomplete and changing information ... P. 141-149

We consider the problem of tracking a trajectory of a dynamical system described by a system of ordinary differential equations. It is required to design a feedback control algorithm guaranteeing a prescribed quality of the controlled process; more exactly, the trajectory of the system must track a given trajectory of a certain reference system subject to an unknown disturbance. We propose two algorithms, which cover the cases of continuous and discrete measurement of phase states, respectively. The algorithms are stable with respect to information noises and computational errors.

Keywords: trajectory tracking, phase states, differential equations

Received March 12, 2021

Revised March 22, 2021

Accepted March 29, 2021

Funding Agency: This study is a part of the research carried out at the Ural Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2021-1383).

Egor Timurovich Larin, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: larin.gor@bk.ru

REFERENCES

1.   Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. New York: Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . Original Russian text published in Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry. Moscow: Nauka Publ., 1974, 456 p.

2.   Krasovskii N.N. Igrovye zadachi o vstreche dvizhenii (Game problems on the encounter of motions). Moscow: Nauka Publ., 1970, 392 p.

3.   Krasovskii N.N. Upravlenie dinamicheskoi sistemoi (Control of a dynamical system). Moscow: Nauka Publ., 1985, 516 p.

4.   Maksimov V.I. On tracking solutions of parabolic equations. Russian Math. (Iz. VUZ), 2012, vol. 56, no. 1, pp. 35–42. doi: 10.3103/S1066369X12010057 

5.   Krasovskii N.N., Kotel’nikova A.N. One problem on stable tracking of motion. Proc. Steklov Inst. Math. (Suppl.), 2006, vol. 253, suppl. 1, pp. S151–S167. doi: 10.1134/S0081543806050117 

6.   On an algorithm for tracking the motion of the reference system with aftereffect when only part of the coordinates is measured. Differ. Uravn., 2011, vol. 47 no. 3, art.-no. 412–418. doi: 10.1134/S0012266111030128 

7.   Maksimov V.I. On a control algorithm for a linear system with measurements of a part of coordinates of the phase vector. Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, vol. 292, no. 1, pp. 197–210. doi: 10.1134/S0081543816020164 

Cite this article as: E.T. Larin. Stable tracking under incomplete and changing information, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 2, pp. 141–149.