V.K. Ivanov, in a series of works, constructed a real, associative, commutative, differential algebra generated by elementary distributions (generalized functions) with singularities at the origin. The values of products for $x\ne$ remain unchanged. Following ideas of S.L. Sobolev, M. Sato, and G. Bremermann, each distribution is associated with its Poisson representation, which is a harmonic function in the upper half-plane. The product of harmonic functions is harmonic only in rare cases. In the algebra of products of harmonic functions corresponding to elementary distributions, a multiplicative homomorphism (a regularizer) is constructed that assigns to the product of harmonic functions a harmonic function which is the Poisson representation of some elementary generalized function. Thus a product of distributions is defined. Moreover, it is proved that such a homomorphism is unique. In the present work, a parametric family of regularizers is constructed that generates a real, commutative, differential algebra of elementary distributions with singularities at the origin. Associativity of products and preservation of values for $x\ne$ are not assumed. Relations are obtained between the products of elementary generalized functions and distributions.
Keywords: products of elementary generalized functions, Poisson transform, regularizer.
Received February 20, 2025
Revised August 7, 2025
Accepted August 18, 2025
Anatoliy Vasilievich Makarov, Cand. Sci. (Phys-Math), Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: anatoliy.makarov@urfu.ru
REFERENCES
1. Schwartz L. Théorie des distributions. Paris, Hermann, vol. I, 1950, 148 p.; vol. II, 1951, 169 p.
2. Schwartz L. Sur l’impossibilité de la multiplication des distributions. C.R. Acad. Sci. Paris, 1954, vol. 239, pp. 847–848.
3. Bremermann H.J. Some remarks on analytic representations and prodacts of distributions. SIAM J. Appl. Math., 1967, vol. 15, no. 4, pp. 929–943. https://doi.org/10.1137/0115083
4. Bremermann H. Distributions, complex variables and Fourier transforms. Addison-Wesley Pub. Co., 1965, 186 p. Translated to Russian under the title Raspredeleniya, kompleksnyye peremennyye i preobrazovaniya Fur’ye. Moscow, Mir Publ., 1968, 276 p.
5. Sobolev S.L. The Cauchy problem in the space of functionals. Dokl. Akad. Nauk SSSR, 1935, vol. 3, pp. 291–294 (in Russian).
6. Mikusinski J. On the square of the Dirac delta-distribution. Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 1966, vol. 14, no. 9, pp. 511–513.
7. Antosik P., Mikusinsky Ya., Sikorsky R. Theory of distributions. The sequential approach. Amsterdam, Elsevier, 1973, 285 p. Translated to Russian under the title Teoriya obobshchennykh funktsiy. Sekventsial’nyy podkhod. Moscow, Mir Publ., 1976, 311 p.
8. Sato M. Theory of hyperfunctions. J. Fac. Sci. Univ. Tokio., 1959, vol. I, pp. 139–193; 1960, vol. II, pp. 387–437.
9. Ivanov V.K. Multiplication of distributions and regularization of divergent integrals. Izv. Vyssh. Ucheb. Zaved. Matematika, 1971, no. 3, pp. 41–49 (in Russian).
10. Ivanov V.K. Hyperdistributions and the multiplication of Schwartz distributions. Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 5, pp. 1045–1048 (in Russian).
11. Ivanov V. The algebra generated by the Heaviside function and the delta-functions. Soviet Math. (Iz. VUZ), 1977, vol. 21(10), pp. 53–56.
12. Ivanov V.K. An associative algebra of elementary generalized functions. Siberian Math. J., 1979, vol. 20, no. 4, pp. 509–516.
13. Colombeau J.-F. Elementary introduction to new generalized functions. Amsterdam, North-Holland Publ. Co., 1985, 282 p.
14. Derr V.Y., Kinzebulatov D.M. Dynamical generalized functions and the multiplication problem. Russ. Math. (Izv. VUZ. Matematika), 2007, vol. 51, no. 5, pp. 32–43. https://doi.org/10.3103/S1066369X07050040
15. Antonevich A.B., Shagova T.G. Multiplication of distributions and algebras of mnemofunctions. J. Math. Sci., 2022, vol. 266, pp. 1–40. https://doi.org/10.1007/s10958-022-06051-z
16. Dias N.C., Jorge C., Prata J.N. An existence and uniqueness result about algebras of Schwartz distributions. Monatshefte für Mathematik, 2024, vol. 203, pp. 43–61.
https://doi.org/10.1007/s00605-023-01917-z
17. Miteva M., Koceva Lazarova L., Zlatanovska B, Stojkovikj N. Products of distributions in Colombeau algebra. Asian-European J. Math., 2024, vol. 17, no. 7, art. no. 2450048. https://doi.org/10.1142/S1793557124500487
18. Chaib M., Taqbibt M., Melliani S., El Omari M.. Colombeau algebras of asymptotically almost automorphic generalized functions: Properties and applications // Analysis. 2025. Vol. 45, no. 2. P. 105–114.
https://doi.org/10.1515/anly-2023-0030
19. Fisher B. Products of generalized functions. Studia Math., 1969, vol. 33, no. 2, pp. 227–230.
20. Gonsalez-Domingez A., Scarfiello R. Nota sobre la formula v. p.$\dfrac{1}{x}\delta=-\dfrac{1}{2}\delta'$. Rev. de la Union Matem. Argen., 1956, vol. XVII, pp. 53–67.
Cite this article as: A.V. Makarov. Parametric families of regularizers for products of elementary generalized functions. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 3, pp. 185–199.