Leont’eva A.O. Bernstein inequality for fractional powers of univariate Dunkl Laplacian and multivariate Laplace operator of entire functions ... P. 167–184

We consider fractional powers of order $\alpha>0$ of the Dunkl Laplacian and the Laplace operator (Riesz derivatives) on classes of entire functions of exponential spherical type of one and many variables. The present study investigates various definitions of these fractional powers, including those involving Fourier (Fourier–Dunkl) multipliers, hypersingular integrals, interpolation formulas containing usual and generalized translations with equidistant and non-equidistant steps. We examine the interrelations between the fractional powers of the Dunkl Laplacian and Riesz derivatives for functions of one and many variables. Sharp Bernstein inequalities for these operators are explored. The study delves into the exploration of sharp Bernstein inequalities for these operators. Earlier, S.S. Platonov (2007) obtained a sharp inequality for the Dunkl Laplacian ($\alpha=2$) on the set of even functions. O.L. Vinogradov (2023) proved sharp inequalities for the fractional powers of the Dunkl Laplacian and Riesz derivatives of functions of several variables for $\alpha\ge 1$. In this paper, we obtain sharp Bernstein inequalities for the fractional powers of the Dunkl Laplacian and Riesz derivatives of functions of several variables for $0<\alpha<1$. The tools for the proof are interpolation formulas containing generalized Dunkl translations with non-equidistant steps, which are zeros of Bessel functions.

Keywords: Riesz derivative, Dunkl Laplacian, entire functions of exponential spherical type, Bernstein inequality, uniform norm

Received March 31, 2025

Revised June 16, 2025

Accepted June 23, 2025

Anastasiya Olegovna Leont’eva, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: lao-imm@yandex.ru

REFERENCES

1.   Timan A.F., Trofimov V.N. Vvedenie v teoriyu garmonicheskikh funktsii [Introduction to the theory of harmonic functions]. Moscow, Nauka Publ., 1968, 208 p.

2.   Gorbachev D.V., Ivanov V.I. Fractional smoothness in $L^p$ with Dunkl weight and its applications. Math. Notes, 2019, vol. 106, no. 4, pp. 537–561. https://doi.org/10.1134/S0001434619090232

3.   Platonov S.S. Bessel harmonic analysis and approximation of functions on the half-line. Izv. Math., 2007, vol. 71, no. 5, pp. 1001–1048. https://doi.org/10.1070/IM2007v071n05ABEH002379

4.   Vinogradov O.L. Sharp Bernstein-type inequalities for Fourier — Dunkl multipliers. Sb. Math., 2023, vol. 214, no. 1, pp. 1–27. https://doi.org/10.4213/sm9724e

5.   Gorbachev D.V. Boas conjecture on the axis for Fourier — Dunkl transform and its generalization. Cheb. Sb., 2023, vol. 24, no. 2, pp. 141–153 (in Russian). https://doi.org/10.22405/2226-8383-2023-24-2-141-153

6.   Arestov V.V., Babenko A.G., Deikalova M.V., Horvát Á. Nikol’skii inequality between the uniform norm and integral norm with bessel weight for entire functions of exponential type on the half-line. Anal. Math., 2018, vol. 44, no. 1, pp. 21–42. https://doi.org/10.1007/s10476-018-0103-6

7.   Watson G.N. A treatise on the theory of Bessel functions. Cambridge, Cambridge Univ. Press, 1944, 804 p. ISBN: 9780722230435 . Translated to Russian under the title Teoriya besselevykh funktsii. Ch. 1, Moscow, Inostr. Liter. Publ., 1949, 798 p.

8.   Gorbachev D.V., Ivanov V.I., Tikhonov S.Y. Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications. Constr. Approx., 2019, vol. 49, no. 3, pp. 555–605.
https://doi.org/10.1007/s00365-018-9435-5

9.   Gorbachev D.V., Dobrovol’skii N.N. Nikol’skii constants in spaces $L^p(\mathbb{R},|x|^\alpha dx)$. Cheb. Sb., 2018, vol. 19, no. 2, pp. 67–79 (in Russian). https://doi.org/10.22405/2226-8383-2018-19-2-67-79

10.   Rösler M. Bessel-type signed hypergroups on $\mathbb R$. In: H. Heyer, A. Mukherjea (eds.), Probability measures on groups and related structures XI, Proc. Oberwolfach 1994, World Scientific, Singapore, 1995. P. 292–304.

11.   Nikol’skii S.M. Approximation of functions of several variables and embedding theorems. Berlin, Heidelberg, Springer, 2011, 420 p. https://doi.org/10.1007/978-3-642-65711-5 . Original Russian text published in Nikol’skii S.M. Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Moscow, Nauka Publ., 1977, 456 p.

12.   Bernstein S.N. On one property of entire functions. In: Sobranie sochinenii [Collected works], vol. 1: Konstruktivnaya teoriya funktsii [Constructive functions theory], Akad. Nauk SSSR Publ., 1952, 582 p.

13.   Gorbachev D.V. Extremum problems for entire functions of exponential spherical type. Math. Notes, 2000, vol. 68, no. 2, pp. 159–166. https://doi.org/10.1007/BF02675341

14.   Lizorkin P.I. Estimations of trigonometric integrals and Bernstein inequality for fractional derivatives. Izv. Akad. Nauk SSSR, Ser. Mat., 1965, vol. 29, no. 1, pp. 109–126 (in Russian).

15.   Sokolov G.T. Some extremal properties of trigonometric sums. Izv. Akad. Nauk SSSR. VII ser. Branch Math. Nat. Sci., 1935, vol. 6–7, pp. 857–884 (in Russian).

16.   Civin P. Inequalities for trigonometric integrals. Duke Math. J., 1941, vol. 8, pp. 656–665. https://doi.org/10.1215/S0012-7094-41-00855-4

17.   Samko S.G. Hypersingular integrals and their applications, London, CRC Press, 2002, 378 p. https://doi.org/10.1201/9781482264968 . Original Russian text published in Samko S.G. Gipersingulyarnye integraly i ikh prilozheniya, Rostov-na-Donu, Izd. Rostov. Univ., 1984, 208 p.

18.   Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives. Theory and applications. Yverdon, Gordon and Breach, 1993, 976 p. ISBN: 9782881248641 . Original Russian text published in Samko S. G., Kilbas A. A., Marichev O. I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, Nauka i Tekhnika Publ., 1987, 638 p.

19.   Bari N.K. A treatise on trigonometric series. NY, Pergamon Press, 1964, pp. 1061. ISBN: 9780080100029 . Original Russian text published in Bari N. K. Trigonometricheskie ryady, Moscow, Fizmatlit Publ., 1961, 936 p.

20.   Szego G. Über einen Satz des Herrn Serge Bernstein. Schrift. Königsberg. Gelehrten Gesellschaft, 1928, vol. 5, no. 4, pp. 59–70.

21.   Akhiezer N.I. Lektsii po teorii approksimatsii [Lectures on the theory of approximation]. Moscow, Nauka Publ., 1965, 409 p.

22.   Leont’eva A.O. Bernstein inequality for the Riesz derivative of order of entire functions of exponential type in the uniform norm. Math. Notes, 2024, vol. 115, no. 2, pp. 205–214. https://doi.org/10.1134/S000143462401019X

23.   Frappier C., Olivier P. A quadrature formula involving zeros of Bessel functions. Math. Comp., 1993, vol. 60, no. 201, pp. 303–316. https://doi.org/10.2307/2153168

24.   Kamzolov A.I. On Riesz’s interpolational formula and Bernshtein’s inequality for functions on homogeneous spaces. Math. Notes, 1974, vol. 15, no. 6, pp. 576–582. https://doi.org/10.1007/BF01152838

25.   Gorbachev D.V. Sharp Bernstein–Nikol’skii inequalities for polynomials and entire functions of exponential type. Chebyshevskii sbornik, 2021, vol. 22, no. 5, pp. 58–110 (in Russian).
https://doi.org/10.22405/2226-8383-2021-22-5-58-110

26.   Gorbachev D.V., Ivanov V.I. Nikol’skii — Bernstein constants for entire functions of exponential spherical type in weighted spaces. Proc. Steklov Inst. Math., 2020, vol. 309, suppl. 1, pp. S24–S35. https://doi.org/10.1134/S0081543820040045

Cite this article as: Leont’eva A.O. Bernstein inequality for fractional powers of univariate Dunkl laplacian and multivariate Laplace operator of entire functions. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2025, vol. 31, no. 3, pp. 167–184.