In this work, we obtain exact Jackson–Stechkin type inequalities in the Hardy space $H_{q,\rho}$ ($1\le q\le\infty$, $0<\rho\le R$), in which the values of the best polynomial approximations are estimated from above in terms of the $\mathcal{K}$-functionals of the $r$th derivatives. For function classes defined by the mentioned characteristics, exact values of Bernstein and Kolmogorov $n$-widths in the space $H_{q,\rho}$ are calculated.
Keywords: Jackson–Stechkin type inequality, best polynomial approximation, $\mathcal{K}$-functional, $n$-widths
Received September 2, 2024
Revised November 12, 2024
Accepted November 18, 2024
Mirgand Shabozovich Shabozov, Dr. Phys.-Math. Sci., Prof., Tajik National University, Dushanbe, 734025 Tajikistan, e-mail: shabozov@mail.ru
Ravshan Azam Karimzoda, National University, Dushanbe, 734025 Tajikistan, e-mail: ravshan.karimov.93@mail.ru
REFERENCES
1. Shabozov M.Sh. On the best simultaneous approximation in the Bergman space $B_2$. Math. Notes, 2023, vol. 114, iss. 3, pp. 377–386. doi: 10.1134/S0001434623090080
2. Shabozov M.Sh., Saidusainov M.S. Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems. Trudy Inst. Mat. Mekh. UrO RAN, 2019, vol. 25, no. 2, pp. 258–272 (in Russian). doi: 10.21538/0134-4889-2019-25-2-258-272
3. Shabozov M.Sh. On the best simultaneous approximation of functions in the Hardy space. Trudy Inst. Mat. Mekh. UrO RAN, 2023, vol. 29, no. 4, pp. 283–291 (in Russian). doi: 10.21538/0134-4889-2023-29-4-283-291
4. Smirnov V.I, Lebedev N.A. Konstruktivnaya teoriya funktsiy kompleksnogo peremennogo [Constructive function theory complex variable]. Moscow, Nauka Publ., 1964, 438 p.
5. Pinkus А. $n$-widths by approximation theory. Berlin, Heidelberg, Springer, 1985, 294 p. doi: 10.1007/978-3-642-69894-1
6. Bergh I., Löfström I. Interpolation spaces: an introduction. Berlin, Springer, Softcover reprint of the original 1st ed. 1976 edition, 2011, 217 p. Translated to Russian under the title Interpolyatsionnyye prostranstva: vvedeniye, Moscow, Mir Publ., 1980, 264 p.
7. Vakarchuk S.B. K-functionals and exact values of $n$-widths for several classes from $L_2$. Math. Notes, 1999, vol. 66, no. 4, pp. 404–408. doi: 10.1007/BF02679087
8. Vakarchuk S.B. Mean approximation of functions on the real axis by algebraic polynomials with Chebyshev — Hermite weight and widths of function classes. Math. Notes, 2014, vol. 95, no. 5, pp. 599–614. doi: 10.1134/S0001434614050046
9. Shabozov M.Sh., Usupov G.A., Zargarov J.J. On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces. Trudy Inst. Mat. Mekh. UrO RAN, 2021, vol. 27, no. 4, pp. 239–254 (in Russian). doi: 10.21538/0134-4889-2021-27-4-239-254
10. Shabozov M.Sh., Shabozova A.A., Mirkalonova M.M. Estimation of the remainder Taylor series for some classes of analytic functions with sums Taylor in Hardy space. Dokl. NAN Tadzhikistana, 2023, vol. 66, no. 5–6, pp. 274–282 (in Russian).
11. Tikhomirov V.M. Nekotoryye voprosy teorii priblizheniy [Some questions of approximation theory]. Moscow, MGU Publ., 1976, 304 p.
12. Shevchuk I.A. Priblizheniye mnogochlenami i sledy nepreryvnykh na otrezke funktsiy [Approximation by polynomials and traces of continuous on a segment of functions]. Kyiv, Naukova Dumka Publ., 1992, 224 p.
Cite this article as: M.Sh. Shabozov, R.A. Karimzoda. $\mathcal{K}$-Functionals and exact values of $n$-widths for some classes of functions in the Hardy space. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 4, pp. 301–308.