A.A. Trembach. Optimal extrapolation of polynomials given with error ... P. 265-275

The problem of optimal extrapolation of polynomials given with an error on a compact set is studied. Its relationship with Chebyshev’s problem on a polynomial that least deviates from zero on a compact set is established. An exact solution to the problem of optimal extrapolation of polynomials is obtained for the case when the compact set is a lemniscate. An exact solution is written for the problem of extrapolation from the interval [-1, 1] to the real line.

Keywords: optimal extrapolation of polynomials, optimal recovery of functionals, Chebyshev polynomial of a compact set

Received April 21, 2024

Revised October 16, 2024

Accepted November 5, 2024

Alexey Andreevich Trembach, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: alex.trembach2015@yandex.ru

REFERENCES

1.   Osipenko K.Yu. Vvedeniye v teoriyu optimal’nogo vosstanovleniya [Introduction to the theory of optimal recovery]. St. Petersburg, Lan’, 2022, 388 p. ISBN: 978-5-507-44358-1 .

2.   Arestov V.V. Approximation of unbounded operators by bounded operators and related extremal problems. Russian Math. Surv., 1996, vol. 51, iss. 6, pp. 1093–1126. doi: 10.1070/RM1996v051n06ABEH003001

3.   Walsh J.L. Interpolation and approximation by rational functions in the complex domain. Rhode Island, Amer. Math. Soc., 1960, 405 p. ISBN: 9780821810200 .

4.   Chebyshev P.L. Theory of the mechanisms known as parallelograms. In: Chebyshev P. L. Collected works. Vol. II. Mathematical analysis. Moscow, Leningrad, Acad. Sci. USSR, 1947, pp. 23–51 (in Russian).

5.   Faber G. Über Tschebyscheffsche polynome. J. reine und angew. Math., 1920, vol. 150, pp. 79–106. doi: 10.1515/crll.1920.150.79

6.   Milovanović G.V., Mitrinović D.S., Rassias Th.M. Topics in polynomials: extremal problems, inequalities, zeros. Singapore, World Sci. Publ. Comp., 1994, 821 p. ISBN: 981-02-0499-X .

7.   Fischer B. Chebyshev polynomials for disjoint compact sets. Constr. Approx., 1992, vol. 8, no. 3, pp. 309–329. doi: 10.1007/BF01279022

8.   Peherstorfer F. Minimal polynomials for the compact sets of the complex plane. Constr. Approx., 1996, vol. 12, no. 4, pp. 481–488. doi: 10.1007/BF02437504

9.   Borodin P.A. On a condition for a polynomial that is sufficient for its norm to be minimal on a given compactum. Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 4, pp. 14–18 (in Russian).

10.   Pestovskaya A.E. Polynomials least deviating from zero with a constraint on the location of roots. Tr. In-ta Matematiki i Mekhaniki UrO RAN, 2022, vol. 28, no. 3, pp. 166–175 (in Russian). doi: 10.21538/0134-4889-2022-28-3-166-175

11.   Suetin P.K. Klassicheskiye ortogonal’nyye mnogochleny [Classical orthogonal polynomials]. Moscow, Nauka Publ., 1979, 416 p.

12.   Kochurov A.S., Tikhomirov V.M. On extrapolation of polynomials with real coefficients to the complex plane. Math. Notes, 2019, vol. 106, iss. 4, pp. 572–576. doi: 10.1134/S0001434619090256

13.   Shabat B.V. Vvedeniye v kompleksnyy analiz. Ch. 1. Funktsii odnogo peremennogo [Introduction to complex analysis. Part 1. Functions of one variable]. St. Petersburg, Lan’ Publ., 2004, 336 p.

14.   Goluzin G.M. Geometric theory of functions of a complex variable. Translations of mathematical monographs, vol. 26. Providence, R.I., American Math. Soc., 1969, 676 p. doi: 10.1090/mmono/026 . Original Russian text published in Goluzin G. M. Geometricheskaya teoriya funktsii kompleksnogo peremennogo: Uchebnoe posobie. Moscow, Leningrad, Nauka GITTL Publ., 1952, 628 p.

15.   Akopyan R.R. Optimal recovery of analytic functions from boundary values specified with error. Math. Notes, 2016, vol. 99, iss. 2, pp. 177–182. doi: 10.1134/S000143461601020X

Cite this article as: A.A. Trembach. Optimal extrapolation of polynomials given with error. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 4, pp. 265–275.