D.V. Paduchikh. Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$ ... P. 207-211

Let $\cal M$ be a class of strongly regular graphs for which $\mu$ is a nonprincipal eigenvalue. Note that the neighborhood of any vertex of an $AT4$-graph lies in $\cal M$. Previously, the parameters of graphs from $\cal M$ were described. In this paper, intersection arrays of $AT4$-graphs with $q\le 4$ and the parameters of the corresponding strongly regular graphs are found.

Keywords: strongly regular graph, $AT4$-graph, locally $\cal M$-graph

Received August 16, 2024

Revised October 15, 2024

Accepted October 21, 2024

Dmitrii Viktorovich Paduchikh, Dr. Phys.-Math. Sci., Prof., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: dpaduchikh@gmail.com

REFERENCES

1.   Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Berlin etc, Springer-Verlag, 1989, 495 p.

2.   Jurisic A., Koolen J. Krein parameters and antipodal tight graphs with diameter 3 and 4. Discrete Mathematics, 2002, vol. 244, pp. 181–202.

3.   Makhnev A.A., Paduchikh D.V. On strongly regular graphs with eigenvalue μ and their extensions. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, vol. 19, no. 3, pp. 207–214 (in Russian).

4.   Xia Zheng-Jiang, Lee Jae-Ho, Koolen J. A new feasibility condition to the AT4 family. The Еlectronic J. Comb., 2023, vol. 30, no. 2, art. no. P2.7. doi: 10.37236/11332

5.   Jurisic A., Koolen J. Classification of the family AT4(qs,q,q) of antipodal tight graphs. J. Comb. Theory, 2011, vol. 118, no. 3. pp. 842–852.

Cite this article as:  D.V. Paduchikh. Enumeration of intersection arrays of $AT4$-graphs with $q\le 4$. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 4, pp. 207–211.