F.G. Korablev. Fibonacci representations of braid groups ... P. 149-169

A family of representations is constructed for the braid group $B_n$. The vector spaces on which the braid group acts are defined as the result of identifying the spaces generated by proper colorings of regular trees of degree $3$ with a marked vertex. This identification is done using a family of canonical isomorphisms. The dimensions of the resulting spaces form the sequence of Fibonacci numbers. We then show how the constructed representations can be extended to invariants of unoriented knots and links in a 3-sphere.

Keywords: braid group, representation, knot invariant, Reshetikhin–Turaev type invariant

Received February 10, 2024

Revised July 28, 2024

Accepted August 5, 2024

Funding Agency: This work was supported by the Russian Science Foundation (project no. 23-21-10014, https://rscf.ru/en/project/23-21-10014/).

Philipp Glebovich Korablev, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Chelyabinsk State University, Chelyabinsk, 454001 Russia, e-mail: korablev@csu.ru 

REFERENCES

1.    Bigelow S.L. Braid groups are linear. J. American Math. Soc., 2001, vol. 14, no. 2, pp. 471–486. doi: 10.1090/S0894-0347-00-00361-1

2.    Burau W. Uber Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 1935, vol. 11, pp. 179–186. doi: 10.1007/BF02940722

3.    Kassel C., Turaev V. Braid groups. Ser. Graduate Texts in Mathematics, vol. 247, 2008, 348 p. doi: 10.1007/978-0-387-68548-9

4.    Kauffman L.H., Lomanco S.J. The Fibonacci model and the Temperley–Lieb algebra. Internat. J. Modern Phys. B, 2009, vol. 22, no. 29, pp. 5065–5080. doi: 10.1142/S0217979208049303

5.    Korablev Ph. Invariants for links and 3-manifolds from the modular category with two simple objects. Preprint arXiv:2305.00733 [math.GT]. 28 p. Available at: https: URL: https://arxiv.org/abs/2305.00733 . doi: 10.48550/arXiv.2305.00733

6.    Krammer  D. The braid group $B_4$ is linear. Inventiones Mathematicae, 2000, vol. 142, pp. 451–486. doi: 10.1007/s002220000088

7.    Lawrence R.J. Homological representations of the Hecke algebra. Communic. Math. Phys., 1990, vol. 135, no. 1, pp. 141–191. doi: 10.1007/BF02097660

8.    Matveev S.V., Ovchinnikov M.A., Sokolov M.V. Construction and properties of the t-invariant. J. Math. Sci., 2003, vol. 113, no. 6, pp. 849–855. doi: 10.1023/A:1021247621259

9.    Reshetikhin N., Turaev V. Invariants of 3-manifolds via link polynomials and quantum groups. Inventiones mathematicae, 1991, vol. 103, no. 3, pp. 547–597. doi: 10.1007/BF01239527

10.    Stanley R.P. Catalan numbers. Cambridge: Cambridge University Press, 2015, 215 p. doi: 10.1017/CBO9781139871495

11.    Turaev  V. Faithful linear representations of the braid groups. Seminaire Bourbaki, 1999-2000, vol. 42. pp. 389–409.

12.    Turaev V.G. Quantum invariants of knots and 3-manifolds. Ser. De Gruyter Studies in Mathematics, 2016, 596 p. doi: 10.1515/9783110435221

13.    Turaev V. Operator invariants of tangles, and R-matrices. Math. USSR Izvestiya, 1990, vol. 35, pp. 411–444. doi: 10.1070/IM1990v035n02ABEH000711

14.    Turaev V., Virelizier A. Monoidal categories and topological field theory. Cham, Birkhäuser, 2017, 513 p. doi: 10.1007/978-3-319-49834-8

15.    Wang Z. Topological quantum computation. CBMS Regional Conference Ser. in Math, 2010, vol. 112, 115 p. doi: 10.1090/cbms/112

Cite this article as: F.G. Korablev. Fibonacci representations of braid groups. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 4, pp. 149–169.