An optimal control problem is considered on an infinite interval with a weakly overtaking optimality criterion. In such problems, the necessary (D.V. Khlopin, 2023) condition at infinity for such a criterion, compatible with the maximum principle, can give a continuum of solutions of the adjoint system. On the other hand, the Cauchy type formula proposed by A.V. Kryazhimsky and S.M. Aseev (2004) always identifies exactly one adjoint trajectory, which often satisfies the maximum principle within the framework of the problem with a free right end. That is why we find asymptotic assumptions on the system that guarantee the compatibility of the Pontryagin maximum principle and this adjoint trajectory (or its modifications for problems with asymptotic terminal constraints). The asymptotic assumptions obtained in this work develop the recent results by D. V. Khlopin (2018, 2023), S.M. Aseev and V.M. Veliov (2019), and S.M. Aseev (2023).
Keywords: optimal control, Pontryagin’s maximum principle, asymptotic endpoint constraint, infinite horizon, uniqueness of the adjoint trajectory, transversality condition at infinity, weakly overtaking optimality
Received June 29, 2024
Revised July 31, 2024
Accepted August 5, 2024
Dmitry Valer’evich Khlopin, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia, e-mail: khlopin@imm.uran.ru
REFERENCES
1. Halkin H. Necessary conditions for optimal control problems with infinite horizons. Econometrica, 1974, vol. 42, no. 2, pp. 267–272. doi: 10.2307/1911976
2. Khlopin D.V. Necessary conditions in infinite-horizon control problems that need no asymptotic assumptions. Set-Valued Var. Anal., 2023, vol. 31, no. 1, art. 8. doi: 10.1007/s11228-023-00672-5
3. Aseev S.M., Kryazhimskii A.V. The Pontryagin maximum principle and optimal economic growth problems. Proc. Steklov Inst. Math., 2007, vol. 257, pp. 1–255. doi: 10.1134/S0081543807020010
4. Aseev S.M., Veliov V.M. Another view of the maximum principle for infinite-horizon optimal control problems in economics. Russ. Math. Surv., 2019, vol. 74, no. 6, pp. 963–1011. doi: 10.1070/RM9915
5. Khlopin D.V. A maximum principle for one infinite horizon impulsive control problem. IFAC-PapersOnLine, 2018, vol. 51, no. 32, pp. 213–218. doi: 10.1016/j.ifacol.2018.11.383
6. Aseev S.M. The Pontryagin maximum principle for optimal control problem with an asymptotic endpoint constraint under weak regularity assumptions. J. Math. Sci., 2023, vol. 270, no. 4, pp. 531–546. doi: 10.1007/s10958-023-06364-7
7. Mordukhovich B.S. Variational analysis and applications. Cham, Springer, 2018, 622 p. doi: 10.1007/978-3-319-92775-6
8. Rockafellar R.T., Wets R.J.B. Variational analysis. Berlin, Springer-Verlag, 2009, vol. 317, 736 p. doi: 10.1007/978-3-642-02431-3
9. Carlson D.A. Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable. J. Optim. Theory Appl., 1990, vol. 64, pp. 55–69. doi: 10.1007/BF00940022
10. Bogusz D. On the existence of a classical optimal solution and of an almost strongly optimal solution for an infinite-horizon control problem. J. Optim. Theory Appl., 2013, vol. 156, no. 3, pp. 650–682. doi: 10.1007/s10957-012-0126-2
11. Clarke F. Functional analysis, calculus of variations and optimal control. London, Springer, 2013, 591 p. doi: 10.1007/978-1-4471-4820-3
12. Khlopin D. Necessity of vanishing shadow price in infinite horizon control problems. J. Dyn. Control Syst., 2013, vol. 19, pp. 519–552. doi: 10.1007/s10883-013-9192-5
13. Khlopin D. Necessity of limiting co-state arc in Bolza-type infinite horizon problem. Optimization, 2015, vol. 64, no. 11, pp. 2417–2440. doi: 10.1080/02331934.2014.971413
14. Ledyaev Yu.S., Treiman J.S. Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions. Russ. Math. Surv., 2012, vol. 67, no. 2, pp. 345–373. doi: 10.1070/rm2012v067n02abeh004789
15. Pе́rez-Aros P. Subdifferential formulae for the supremum of an arbitrary family of functions. SIAM J. Control Optim., 2019, vol. 29, no. 2, pp. 1714–1743. doi: 10.1137/17M1163141
16. Khlopin D.V. On two-sided unidirectional mean value inequality in a Frе́chet smooth space. Ural Math. J., 2023, vol. 9, no. 2, pp. 132–140. doi: 10.15826/umj.2023.2.011
17. Aseev S.M., Kryazhimskii A.V. The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J. Control Optim., 2004, vol. 43, no. 3, pp. 1094–1119. doi: 10.1137/S0363012903427518
18. Seierstad A. Necessary conditions for nonsmooth, infinite-horizon optimal control problems. J. Optim. Theory Appl., 1999, vol. 103, no. 1, pp. 201–230. doi: 10.1023/A:1021733719020
19. Shell K. Applications of Pontryagin’s maximum principle to economics. In: Kuhn H.W., Szegő G.P. (eds.) Mathematical systems theory and economics I/II. Berlin, Heidelberg, Springer, 1969, pp. 241–292. doi: 10.1007/978-3-642-46196-5_12
20. Belyakov A.O. Necessary conditions for infinite horizon optimal control problems revisited. 2017. 19 p. Available at: https://arxiv.org/pdf/1512.01206 . doi: 10.48550/arXiv.1512.01206
21. Belyakov A.O. On sufficient optimality conditions for infinite horizon optimal control problems. Proc. Steklov Inst. Math., 2020, vol. 308, suppl. 1, pp. S56–S66. doi: 10.1134/S0081543820010058
22. Mordukhovich B.S., Nghia T. Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with lipschitzian data. SIAM J. Control Optim., 2013, vol. 23, no. 1, pp. 406–431. doi: 10.1137/110857738
23. Kamihigashi T. Necessity of transversality conditions for infinite horizon problems. Econometrica, 2001, vol. 69, no. 4, pp. 995–1012. doi: 10.1111/1468-0262.00227
24. Aseev S.M. Kryazhimskii A.V., Besov K.O. Infinite-horizon optimal control problems in economics. Russ. Math. Surv., 2012, vol. 67, no. 2, pp. 195–253. doi: 10.1070/RM2012v067n02ABEH004785
25. Aseev S.M. Necessary conditions for the optimality and sustainability of solutions in infinite-horizon optimal control problems. Mathematics, 2023, vol. 11, no. 18, pp. 38–51. doi: 10.3390/math11183851
Cite this article as: D.V. Khlopin. On an adjoint trajectory in infinite-horizon control problems. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 274–292.