The linear problem of pursuing one evader by a group of pursuers is considered in a finite-dimensional Euclidean space. In a given timescale, the problem is described by a linear system with a simple matrix. The set of admissible controls for each participant is the unit ball centered at the origin. The terminal sets are given convex compact sets. The pursuers use counter-strategies based on information about the initial positions and control history of the evader. Sufficient conditions for the capture of the evader by a given number of pursuers are obtained in terms of the initial positions and parameters of the game. Sufficient evasion conditions are obtained for discrete time scales.
Keywords: differential game, group pursuit, evader, pursuer, multiple capture, timescale
Received March 12, 2024
Revised May 15, 2024
Accepted May 20, 2024
Funding Agency: This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEWS-2024-0009).
Elena Sergeevna Mozhegova, doctoral student, Udmurt State University, Izhevsk, 426034 Russia, e-mail: mozhegovalena@yandex.ru
Nikolai Nikandrovich Petrov, Dr. Phys.-Math. Sci., Prof., Udmurt State University, Izhevsk, 426034, Russia, e-mail: kma3@list.ru
REFERENCES
1. Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY, Springer, 1988, 517 p. ISBN: 978-1-4612-8318-8 . This book is substantially revised version of the monograph: Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.
2. Pontryagin L.S. Izbrannye nauchnye trudy, II [Selected scientific works, II]. Moscow, Nauka Publ., 1988, 575 p. ISBN: 5-02-14410-X .
3. Chikrii A.A. Conflict-controlled processes. Dordrecht, Springer, 1997, 404 p. doi: 10.1007/978-94-017-1135-7 . Original Russian text published in Chikrii A. A. Konfliktno upravlyaemye processy, Kiev, Naukova Dumka Publ., 1992, 384 p.
4. Grigorenko N.L. Matematicheskie metody upravleniya neskol’kimi dinamicheskimi protsessami [Mathematical methods of control a few dynamic processes]. Moscow, Moscow State Univ. Publ., 1990, 198 p. ISBN: 5-211-00954-1 .
5. Samatov B.T. The pursuit-evasion problem under integral-geometric constraints on pursuer controls. Autom. Remote Control, 2013, vol. 74, no. 7, pp. 1072–1081. doi: 10.1134/S0005117913070023
6. Chikrii A.A., Chikrii G.T. Matrix resolving functions in game problems of dynamics. Proc. Steklov Inst. Math., 2015, vol. 291, suppl. 1, pp. S56–S65. doi: 10.1134/S0081543815090047
7. Aulbach B., Hilger S. Linear dynamic processes with inhomogeneous time scale. In: “Nonlinear dynamics and quantum dynamical systems”. Contributions to the international seminar ISAM-90, Gaussig (GDR), March 19 - 23,1990, G.A. Leonov, V. Reitmann, W. Timmermann (eds.), Ser. Math. Res., vol. 59, Berlin, Akademie-Verlag, 1990, pp. 9–20. doi: 10.1515/9783112581445-002
8. Hilger S. Analysis on measure chains — a unified approach to continuous and discrete calculus. Results in Math., 1990, vol. 18, pp. 18–56. doi: 10.1007/BF03323153
9. Benchohra M., Henderson J., Ntouyas S. Impulsive differential equations and inclusions, NY, Hindawi Publ., 2006, 381 p. doi: 10.1155/9789775945501
10. Bohner M., Peterson A. Advances in dynamic equations on time scales, Boston, Birkhäuser, 2003, 348 p. doi: 10.1007/978-0-8176-8230-9
11. Martins N., Torres D. Necessary conditions for linear noncooperative N-player delta differential games on time scales. Discus. Math., Differ. Inclus., Control and Optimiz., 2011, vol. 31, no. 1, pp. 23–37. doi: 10.7151/dmdico.1126
12. Petrov N.N. The problem of simple group pursuit with phase constraints in time scales. Vestnik Udmurt. Un-ta. Matematika. Mekhanika. Komp’yuternye Nauki, 2020, vol. 30, no. 2, pp. 249–258 (in Russian). doi: 10.35634/vm200208
13. Petrov N.N. Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales. Dyn. Games Appl., 2022, vol. 12, no. 2, pp. 632–642. doi: 10.1007/s13235-021-00387-y
14. Mozhegova E.S. On a group pursuit problem on time scales. Vestnik Udmurt. Un-ta. Matematika. Mekhanika. Komp’yuternye Nauki, 2023, vol. 33, no. 1, pp. 130–140 (in Russian). doi: 10.35634/vm230109
15. Chikrii A.A. On multiple capture of the evader. Teoriya optimal’nykh reshenii, 2009, no. 8, pp. 56–60.
16. Cabada A., Vivero D.R. Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral; application to the calculus of Δ-antiderivatives. Math. Comp. Modelling, 2006, vol. 43, no. 1–2, pp. 194–207. doi: 10.1016/j.mcm.2005.09.028
Cite this article as: E.S. Mozhegova, N.N. Petrov. Multiple capture of an evader in the linear pursuit problem on timescales. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 217–228.