N.M. Dmitruk. A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance ... P. 122-138

This paper deals with an optimal control problem for a linear discrete-time system subject to unknown bounded disturbance. It is required to steer the system robustly to a terminal set with the smallest total impulse of the control function. A problem of constructing an optimal multiply closed control strategy is formulated. It is assumed that the system states are measured and the control is corrected at some future times. A method for calculating an optimal strategy based on reducing the formulated problems to linear programs is proposed.

Keywords: linear system, disturbances, robust optimal control, control strategy, algorithm

Received April 4, 2024

Revised May 1, 2024

Accepted May 6, 2024

Funding Agency: This work was supported by the National Program for Scientific Research of the Republic of Belarus “Convergence 2025” (project no. 1.2.04.1).

Natalia Mikhailovna Dmitruk, Cand. Phys.-Math. Sci., Associate Prof., Belarusian State University, Minsk, 220030 Belarus, e-mail: dmitrukn@bsu.by

REFERENCES

1.   Krasovskiy N.N. Upravleniye dinamicheskoy sistemoy. Zadacha o minimume garantirovannogo rezul’tata [Dynamic system control. Minimum guaranteed result problem]. Moscow, Nauka Publ., 1985, 520 p.

2.   Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under the conditions of uncertainty]. Moscow, Nauka Publ., 1977, 392 p.

3.   Bellman R. Dynamic programming. Princeton, New Jersey, Princeton Univer. Press, 1957, 340 p. ISBN: 069107951X . Translated to Russian under the title Dinamicheskoe programmirovanie, Moscow, Inostr. Liter. Publ., 1960, 400 p.

4.   Lee J.H., Yu Z. Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 1997, vol. 33, no. 5, pp. 763–781. doi: 10.1016/S0005-1098(96)00255-5

5.   Bemporad A., Borrelli F., Morari M. Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans. Autom. Control, 2003, vol. 48, no. 9, pp. 1600–1606. doi: 10.1109/TAC.2003.816984

6.   Gabasov R., Kirillova F.M., Kostina E.A. Subtended feedback with respect to state for optimization of uncertain control systems. I: Single loop. Autom. Remote Control, 1996, vol. 57, no. 7, pp. 1008–1015.

7.   Gabasov R., Kirillova F.M., Kostina E.A. Closed-loop state feedback for optimization of uncertain control systems. II: Multiply closed feedback. Autom. Remote Control, 1996, vol. 57, no. 8, pp. 1137–1145.

8.   Balashevich N.V., Gabasov R., Kirillova F.M. The construction of optimal feedback from mathematical models with uncertainty. Comput. Math. Math. Phys., 2004, vol. 44, no. 2, pp. 247–267.

9.   Kostina E., Kostyukova O. Worst-case control policies for (terminal) linear-quadratic control problems under disturbances. Inter. J. Robust and Nonlinear Control, 2009, vol. 19, no. 17, pp. 1940–1958. doi: 10.1002/rnc.1417

10.   Dmitruk N.M. Optimal strategy with one closing instant for a linear optimal guaranteed control problem. Comput. Math. Math. Phys., 2018, vol. 58, iss. 5, pp. 642–658. doi: 10.1134/S096554251805007X

11.   Kastsiukevich D.A., Dmitruk N.M. A method for constructing an optimal control strategy in a linear terminal problem. J. Belarus. State Univ. Mathematics and Informatics, 2021, vol. 2, pp. 38–50. doi: 10.33581/2520-6508-2021-2-38-50

12.   Dmitruk N.M. Multiply closed control strategy in a linear terminal problem of optimal guaranteed control. Proc. Steklov Inst. Math., 2022, vol. 319, suppl. 1, pp. S112–S128. doi: 10.1134/S0081543822060104

13.   Boyd S., Vandenberghe L. Convex optimization, UK, Cambridge; New York, Cambridge Univ. Press, 2004, 716 p.

14.   Gal T. Postoptimal analyses, parametric programming and related topics, Berlin, De Gruyter Publ., 1995, 437 p.

Cite this article as: N.M. Dmitruk. A method for constructing multiply closed strategies in the problem of minimizing the total control impulse in a linear system with disturbance. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 3, pp. 122–138.