The problem of guaranteed closed-loop guidance to a given set at a given time is studied for a linear dynamical control system described by differential equations with a fractional derivative of the Caputo type. The initial state is a priori unknown, but belongs to a given finite set. The information on the position of the system is received online in the form of an observation signal. The solvability of the guidance problem for the control system is analyzed using the method of Osipov–Kryazhimskii program packages. The paper provides a brief overview of the results that develop the method of program packages and use it in guidance problems for various classes of systems. This method allows us to connect the solvability condition of the guaranteed closed-loop guidance problem for an original system with the solvability condition of the open-loop guidance problem for a special extended system. Following the technique of the method of program packages, a criterion for the solvability of the considered guidance problem is derived for a fractional-order system. In the case where the problem is solvable, a special procedure for constructing a guiding program package is given. The developed technique for analyzing the guaranteed closed-loop guidance problem and constructing a guiding control for an unknown initial state is illustrated by the example of a specific linear mechanical control system with a Caputo fractional derivative.
Keywords: control, incomplete information, linear systems, Caputo fractional derivative
Received April 15, 2024
Revised May 2, 2024
Accepted May 6, 2024
Funding Agency: This work was supported by the Russian Science Foundation (project no. 21-71-10070, https://rscf.ru/project/21-71-10070/).
Platon Gennad’evich Surkov, Cand. Sci. (Phys.-Math.), Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia; Ural Federal University, Yekaterinburg, 620000 Russia, e-mail: spg@imm.uran.ru
REFERENCES
1. Kurzhanskii A.B. Upravlenie i nablyudenie v usloviyakh neopredelennosti [Control and observation under the conditions of uncertainty]. Moscow, Nauka Publ., 1977, 392 p.
2. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam, Elsevier Science Publ., 2006, 540 p. ISBN-13: 978-0444518323 .
3. Krasovskii N.N. Igrovye zadachi o vstreche dvizhenii [Game problems on the encounter of motions]. Moscow, Nauka Publ., 1970, 420 p.
4. Krasovskii N.N., Subbotin A.I. Game-theoretical control problems. NY, Springer, 1988, 528 p. ISBN: 978-1-4612-8318-8 . This book is substantially revised version of the monograph Pozitsionnye differentsial’nye igry, Moscow, Nauka Publ., 1974, 456 p.
5. Subbotin A.I., Chentsov A.G. Optimizatsiya garantii v zadachakh upravleniy [Guarantee optimization in control problems]. Moscow, Nauka Publ., 1981, 288 p.
6. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives. Theory and applications. Switzerland, Gordon and Breach Sci. Publ., 1993, 976 p. ISBN: 9782881248641. Original Russian text published in Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, Nauka i Tekhnika Publ., 1987, 688 p.
7. Rossikhin Yu.A., Shitikova M.V. Applications of fractional calculus to dynamic problem linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev., 1997, vol. 50, no. 1, pp. 15–67. doi: 10.1115/1.3101682
8. Tarasov V.E. Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal., 2016, vol. 19, no. 5, pp. 1200–1221. doi: 10.1515/fca-2016-0062
9. Uchaikin V.V. Fractional derivatives for physicists and engineers: vol. I Background and theory, vol. II Applications. Heidelberg: Springer, 2013, 385 p. doi: 10.1007/978-3-642-33911-0
10. Machtakova A.I., Petrov N.N. On two problems of pursuit of a group of evaders in differential games with fractional derivatives. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2024, vol. 34, no. 1, pp. 65–79 (in Russian). doi: 10.35634/vm240105
11. Gomoyunov M.I. Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems. Fract. Calc. Appl. Anal., 2018, vol. 21, no. 5, pp. 1238–1261. doi: 10.1515/fca-2018-0066
12. Matychyn I., Onyshchenko V. Time-optimal control of linear fractional systems with variable coefficients. Inter. J. Appl. Math. and Comp. Sci., 2021, vol. 31, no. 3, pp. 375–386. doi: 10.34768/amcs-2021-0025
13. Osipov Yu.S. Control packages: an approach to solution of positional control problems with incomplete information. Russ. Math. Surv., 2006, vol. 61, no. 4, pp. 611–661. doi: 10.1070/RM2006v061n04ABEH004342
14. Kryazhimskii A.V., Osipov Yu.S. Idealized program packages and problems of positional control with incomplete information On the solvability of problems of guaranteeing control for partially observable linear dynamical systems. Proc. Steklov Inst. Math. (Suppl.), 2010, vol. 268, suppl. 1, pp. S155–S174. doi: 10.1134/S0081543810050123
15. Kryazhimskii A.V., Osipov Yu.S. On the solvability of problems of guaranteeing control for partially observable linear dynamical systems. Proc. Steklov Inst. Math., 2012, vol. 277, pp. 144–159. doi: 10.1134/S0081543812040104
16. Kryazhimskii A.V., Strelkovskii N.V. An Open-loop criterion for the solvability of a closed-loop guidance problem with incomplete information: Linear control systems. Proc. Steklov Inst. Math. (Suppl.), 2015, vol. 291, suppl. 1, pp. S113–S127. doi: 10.1134/S0081543815090084
17. Kryazhimskii A.V., Strelkovskii N.V. A problem of the guaranteed positional guidance of a linear control system to a given moment in time under incomplete information. Program criterion for solvability. Trudy Inst. Mat. Mekh. UrO RAN, 2014, vol. 20, no. 4, pp. 168–177 (in Russian).
18. Strelkovskii N.V. Constructing a strategy for the guaranteed positioning guidance of a linear controlled system with incomplete data. Moscow Univ. Comput. Math. Cybern., 2015, vol. 39, pp. 126–134. doi: 10.3103/S0278641915030085
19. Maksimov V.I., Surkov P.G. On the solvability of the problem of guaranteed package guidance to a system of target sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2017, vol. 27, no. 3, pp. 344–354 (in Russian). doi: 10.20537/vm170305
20. Orlov S.M. Ivestigating one class of extended open-loop guidance problems. Moscow Univ. Comput. Math. Cybern., 2018, vol. 42, pp. 5–14. doi: 10.3103/S0278641918010077
21. Orlov S.M., Strelkovskii N.V. Calculation of elements of a guiding program package for singular clusters of the set of initial states in the package guidance problem. Proc. Steklov Inst. Math. (Suppl.), 2020, vol. 308, suppl. 1, pp. S163–S177. doi: 10.1134/S0081543820020133
22. Strelkovskii N.V., Orlov S.M. Algorithm for constructing a guaranteeing program package in a control promlem with incomplete information. Moscow Univ. Comput. Math. Cybern., 2018, vol. 42, pp. 69–79. doi: 10.3103/S0278641918020061
23. Surkov P.G. The problem of package guidance under incomplete information and integral signal of observation. Sib. Electron. Math. Rep., 2018, vol. 15, pp. 373–388 (in Russian). doi: 10.17377/semi.2018.15.034
24. Surkov P.G. On the problem of package guidance for nonlinear control system via fuzzy approach. IFAC-PapersOnLine, 2018, vol. 51, no. 32, pp. 733–738. doi: 10.1016/j.ifacol.2018.11.459
25. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transact. Syst., Man, and Cybernetics, 1985, vol. SMC-15, no. 1, pp. 116–132. doi: 10.1109/TSMC.1985.6313399
26. Maksimov V.I. Differential guidance game with incomplete information on the state coordinates and unknown initial state. Diff. Equ., 2015, vol. 51, no. 12, pp. 1656–1665. doi: 10.1134/S0012266115120137
27. Maksimov V.I. On a guaranteed guidance problem under incomplete information. Proc. Steklov Inst. Math., 2017, vol. 297, suppl. 1, pp. S147–S158. doi: 10.1134/S0081543817050157
28. Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I. Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem [Methods for dynamic reconstruction of inputs of control systems]. Ekaterinburg, Ural Branch of RAS Publ., 2011, 291 p.
29. Maksimov V.I. Guidance problem for a distributed sytem with incomplete information on the state coordinates and an unknown initial state. Diff. Equ., 2016, vol. 52, no. 11, pp. 1442–1452. doi: 10.1134/S0012266116110069
30. Rozenberg V.L. A control problem under incomplete information for a linear stochastic differential equation. Proc. Steklov Inst. Math. (Suppl.), 2016, vol. 295, suppl. 1, pp. S145–S155. doi: 10.1134/S0081543816090157
31. Blizorukova M.S. On a control problem for a linear system with delay in the control. Proc. Steklov Inst. Math. (Suppl.), 2017, vol. 297, suppl. 1, pp. S35–S42. doi: 10.1134/S0081543817050054
32. Surkov P.G. The problem of package guidance with incomplete information for a linear control system with a delay. Comput. Math. Model., 2017, vol. 28, pp. 504–516. doi: 10.1007/s10598-017-9377-y
33. Surkov P.G. The problem of package guidance by a given time for a linear control system with delay. Proc. Steklov Inst. Math., 2015, vol. 291, no. 1, pp. S68–S77. doi: 10.1134/S0081543815080076
34. Grigorenko N.L., Rumyantsev A.E. On a class of control problems with incomplete information. Proc. Steklov Inst. Math., 2015, vol. 291, no. 1, pp. 68–77. doi: 10.1134/S0081543815080076
35. Grigorenko N.L., Kondrat’eva Yu.A., Luk’yanova L.N. The problem of finding a guaranteed program control under incomplete information for a linear system. Tr. Inst. Mat. Mekh. UrO RAN, 2015, vol. 21, no. 2, pp. 41–49 (in Russian).
36. Grigorenko N.L., Rumyantsev A.E. Terminal control of a nonlinear process under disturbances. Proc. Steklov Inst. Math. (Suppl.), 2017, vol. 297, suppl. 1, pp. S108–S116. doi: 10.1134/S0081543817050121
37. Bourdin L. Cauchy — Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems. Differ. Int. Equations, 2018, vol. 31, no. 7/8, pp. 559–594. doi: 10.57262/die/1526004031
38. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag—Leffler Functions, Related Topics and Applications. Berlin, Springer-Verlag, 2014, 454 p.
39. Krasovskii N.N. Teoriya upravleniya dvizheniem [Motion control theory]. Moscow, Nauka Publ, 1968, 476 pp.
40. Balachandran K., Kokila J.Y. On the controllability of fractional dynamical systems. Int. J. Appl. Math. Comput. Sci., 2012, vol. 22, no. 3, pp. 523–531. doi: 10.2478/v10006-012-0039-0
41. Kulczycki P., Korbicz J., Kacprzyk J. Fractional dynamical systems: methods, algorithms and applications. Cham, Springer, 2022, 397 p. doi: 10.1007/978-3-030-89972-1
42. Matignon D., d’Andréa-Novel B. Some results on controllability and observability of finite-dimensional fractional differential systems. Comput. Engin. Syst. Appl., 1996, vol. 2. pp. 952–956.
43. Matychyn I., Onyshchenko V. Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal., 2018, vol. 21, no. 1, pp. 134–150. doi: 10.1515/fca-2018-0009
44. Gorenflo R., Vessella S. Abel Integral Equations: Analisys and Applications. Berlin, Springer, 1991, 222 p. doi: 10.1007/BFb0084665
45. Agarwal O.P. A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems. J. Appl. Mech., 2001, vol. 68, no. 2, pp. 339–341. doi: 10.1115/1.1352017
46. Monje C.A., Chen Y., Vinagre B.M., Xue D., Feliu V. Fractional-order systems and controls: fundamentals and applications. London, Springer-Verlag, 2014, 415 p. doi: 10.1007/978-1-84996-335-0
Cite this article as: P.G. Surkov. Package guidance problem for a fractional-order system. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 2, pp. 222–242. Proceedings of the Steklov Institute of Mathematics, 2024, Vol. 325, Suppl. 1, pp. S212-S230.