M.I. Sumin. The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum ... P. 203-221

We consider a regularization of the Lagrange multiplier rule (LMR) in the nondifferential form in a convex problem for constrained extremum with an operator equality-constraint in a Hilbert space and a finite number of functional inequality-constraints. The objective functional of the problem is assumed to be strongly convex, and the convex closed set of its admissible elements also belongs to a Hilbert space. The constraints of the problem contain additively included parameters, which makes it possible to use the so-called perturbation method to study it. The main purpose of the regularized LMR is the stable generation of generalized minimizing sequences (GMSs), which approximate the exact solution of the problem using extremals of the regular Lagrange functional. The regularized LMR itself can be interpreted as a GMS-generating (regularizing) operator, which assigns to each set of input data of the constrained extremum problem the extremal of its corresponding regular Lagrange functional, in which the dual variable is generated in accordance with one or another procedure for stabilizing the dual problem. The main attention is paid to: (1) studying the connection between the dual regularization procedure and the subdifferential properties of the value function of the original problem; 2) proving the convergence of this procedure in the case of solvability of the dual problem; (3) an appropriate update of the regularized LMR; (4) obtaining the classical LMR as a limiting version of its regularized analog.

Keywords: convex problem for constrained extremum, Lagrange multiplier rule, regularization, perturbation method, value function, subdifferential, dual problem, generalized minimizing sequence, regularizing algorithm

Received February 10, 2024

Revised February 28, 2024

Accepted March 4, 2024

Funding Agency: The work on the results presented in Sections 1–3 was supported by the Russian Science Foundation (project no. 23-11-20020, https://rscf.ru/project/23-11-20020/), and the work on the results presented in Section 4 was supported by the Ministry of Education and Science of the Tambov oblast (grant no. 2-FP-2023).

Mikhail Iosifovich Sumin, Dr. Phys.-Math. Sci., Prof., Chief Researcher, Derzhavin Tambov State University, Tambov, 392000 Russia, e-mail: m.sumin@mail.ru

REFERENCES

1.   Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal Control. NY, Plenum Press, 1987, 309 p. doi: 10.1007/978-1-4615-7551-1 . Original Russian text published in Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal’noe upravlenie, Moscow, Nauka Publ., 1979, 432 p.

2.   Tikhomirov V.M. Stories about maxima and minima. Providence, RI: AMS, 1990, 187 p. ISBN: 978-0-8218-0165-9 . Original Russian text published in Tikhomirov V.M. Rasskazy o maksimumakh i minimumakh, Moscow, Nauka Publ., 1986, 192 p.

3.   Avakov E.R., Magaril-Il’yaev G.G., Tikhomirov V.M. Lagrange’s principle in extremum problems with constraints. Russian Math. Surveys, 2013, vol. 68, no. 3, pp. 401–433. doi: 10.1070/rm2013v068n03abeh004838

4.   Arutyunov A.V., Zhukovskiy S.E. On the Lagrange multiplier rule for minimizing sequences. Eurasian Math. J., 2023, vol. 14, no. 1, pp. 8–15. doi: 10.32523/2077-9879-2023-14-1-08-15

5.   Tröltzsch F. Optimal control of partial differential equations. Theory, methods and applications. In: Graduate studies in mathematics, vol. 112. Providence, Rhode Island: AMS, 2010, 408 p. doi: 10.1090/gsm/112

6.   Borzi A. The sequential quadratic Hamiltonian method. Solving optimal control problems. Boca Raton, FL: Chapman and Hall/CRC Press, 2023, 266 p. doi: 10.1201/9781003152620

7.   Sumin M.I. Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems. Trudy Inst. Mat. Mekh. UrO RAN, 2019, vol. 25, no. 1, pp. 279–296 (in Russian). doi: 10.21538/0134-4889-2019-25-1-279-296

8.   Vasil’ev F.P. Metody optimizatsii [Optimization methods]. Moscow: Moscow Centre of Continuous Math. Education Publ., 2011. Vol. 1: 620 p., ISBN: 978-5-94057-707-2; Vol. 2: 433 p., ISBN: 978-5-94057-708-9 .

9.   Tikhonov A.N., Arsenin V.Ya. Solutions of ill-posed problems. Washington,Winston, NY: Halsted Press, 1977, 258 p. ISBN: 978-0470991244 . Original Russian text published in Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach, Moscow, Nauka Publ., 1974, 224 p.

10.   Ivanov V.K., Vasin V.V., Tanana V.P. Theory of linear ill-posed problems and its applications. In: Inverse and ill-posed problems series, vol. 36. Utrecht etc., VSP, 2002, 281 p. doi: 10.1515/9783110944822 . Original Russian text published in Ivanov V.K., Vasin V.V., Tanana V.P. Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Moscow, Nauka Publ., 1978, 208 p.

11.   Bakushinskii A.B., Goncharskii A.V. Nekorrektnye zadachi. Chislennye metody i prilozheniya [Ill-posed problems. Numerical methods and applications]. Moscow, Moscow State Univ. Publ., 1989, 209 p.

12.   Kokurin M.Yu. Elementy obshchei teorii regularizatsii nekorrektnykh zadach [Elements of general theory of ill-posed problems regularization]. Moscow; Izhevsk: Institut komp’yuternykh issledovanii, 2023, 356 p. ISBN: 978-5-4344-0987-2 .

13.   Sumin M.I. Duality-based regularization in a linear convex mathematical programming problem. Comput. Math. Math. Phys., 2007, vol. 47, no. 4, pp. 579–600. doi: 10.1134/S0965542507040045

14.   Sumin M.I. Regularized parametric Kuhn–Tucker theorem in a Hilbert space. Comput. Math. Math. Phys., 2011, vol. 51, no. 9, pp. 1489–1509. doi: 10.1134/S0965542511090156

15.   Golstein E.G. Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya [Duality theory in mathematic programming and its applications]. Moscow, Nauka Publ., 1971, 351 p.

16.   Warga J. Optimal control of differential and functional equations. NY, Acad. Press, 1972, 531 p. doi: 10.1016/C2013-0-11669-8 . Translated to Russian under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami, Moscow, Nauka Publ., 1977, 620 p.

17.   Sumin M.I. On regularization of the classical optimality conditions in convex optimal control problems. Trudy Inst. Mat. Mekh. UrO RAN, 2020, vol. 26, no. 2, pp. 252–269 (in Russian). doi: 10.21538/0134-4889-2020-26-2-252-269

18.   Tikhonov A.N. On the stability of the functional optimization problem. U.S.S.R. Comput. Math. Math. Phys., 1966, vol. 6, no. 4, pp. 28–33. doi: 10.1016/0041-5553(66)90003-6

19.   Aubin J.P. L’analyse  non linéaire et ses motivations économiques. Paris, Masson, 1984, 214 p. ISBN: 978-2225795411 . Translated to Russian under the title Nelineinyi analiz i ego ekonomicheskie prilozheniya, Moscow, Mir Publ., 1988, 264 p.

20.   Clarke F.H. Optimization and nonsmooth analysis. NY, Wiley Interscience, 1983, 308 p. ISBN: 9780471875048 . Translated to Russian under the title Optimizatsiya i negladkii analiz, Moscow, Nauka Publ., 1988, 280 p.

21.   Borwein J.M., Strojwas H.M. Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory. Canad. J. Math., 1986, vol. 38, no. 2, pp. 431–452, doi: 10.4153/CJM-1986-022-4 . Part II: Applications. Canad. J. Math., 1987, vol. 39, no. 2, pp. 428–472. doi: 10.4153/CJM-1987-019-4

22.   Loewen P.D. Optimal control via nonsmooth analysis. In: CRM proceedings and lecture notes, vol. 2. Providence, RI: Amer. Math. Soc., 1993, 153 p. doi: 10.1090/crmp/002

23.   Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R. Nonsmooth analysis and control theory. In: Graduate texts in mathematics, vol. 178. NY, Springer-Verlag, 1998, 278 p. doi: 10.1007/b97650

24.   Sumin M.I. Suboptimal control of systems with distributed parameters: minimizing sequences, value function, regularity, normality. Control and Cybernetics, 1996, vol. 25, no. 3, pp. 529–552.

25.   Aubin J.P., Ekeland I. Applied nonlinear analysis. NY, Wiley-Interscience, 1984, 518 p. ISBN: 9780471059981. Translated to Russian under the title Prikladnoi nelineinyi analiz, Moscow, Mir Publ., 1988, 512 p.

26.   Sumin M.I. Nondifferential Kuhn–Tucker theorems in constrained extremum problems via subdifferentials of nonsmooth analysis. Vestnik Ross. Univ. Mat., 2020, vol. 25, no. 131, pp. 307–330 (in Russian). doi: 10.20310/2686-9667-2020-25-131-307-330

27.   Ekeland I. On the variational principle. J. Math. Anal. Appl., 1974, vol. 47, no. 2, pp. 324–353. doi: 10.1016/0022-247X(74)90025-0

Cite this article as: M.I. Sumin. The perturbation method and a regularization of the Lagrange multiplier rule in convex problems for constrained extremum. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 2, pp. 203–221. Proceedings of the Steklov Institute of Mathematics, 2024, Vol. 325, Suppl. 1, pp. S194-S211.