A. Kerimbekov, E.F. Abdylaeva. On solvability of the tracking problem in nonlinear vector optimization of oscillation processes ... P. 103-115

The tracking problem is investigated in the nonlinear vector optimization of oscillation processes described by integro-differential partial differential equations when the scalar function of external and boundary influence depends nonlinearly on several controls. It is established that this problem has some specific features; in particular, the components of the distributed and boundary vector controls satisfy a system of equal relations and are defined as a solution to a system of two nonlinear integral equations. A method for solving this system is developed. Sufficient conditions are found for the unique solvability of the tracking problem, and an algorithm is developed for constructing a complete solution to the nonlinear optimization problem.

Keywords: tracking problem, nonlinear optimization, maximum principle, properties of equal ratios, distributed vector optimal control, boundary vector optimal control, optimal process, minimum value of the functional

Received February 9, 2024

Revised March 25, 2024

Accepted April 15, 2024

Akylbek Kerimbekov, Dr. Phys.-Math. Sci., Prof., Department of Applied Mathematics and Informatics, Kyrgyz-Russian Slavic University, Bishkek, Kyrgyzstan, e-mail: akl7@rambler.ru

Elmira Faizuldaevna Abdyldaeva, Сand. Sci. (Phys.-Math.), Department of Mathematics, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan, e-mail: elmiraabdyldaeva@manas.edu.kgefa_69@mail.ru

REFERENCES

1.   Egorov A.I. Optimal processes in systems with distributed parameters and certain problems of the theory of invariance. Izv. Akad. Nauk SSSR Ser. Mat., 1965, vol. 29, no. 6, pp. 1205–1260.

2.   Egorov A.I. Optimal’noe upravlenie teplovymi i diffuzionnymi protsessami [Optimal control of thermal and diffusion processes]. Moscow: Nauka Publ., 1978, 464 p.

3.   Komkov V. Teoriya optimal’nogo upravleniya dempfirovaniem kolebanii prostykh uprugikh sistem [Optimal control theory of vibration damping of simple elastic systems]. Moscow: Nauka Publ., 1978. 464 p.

4.   Butkovskiy A.G. Distributed control systems. NY: Elsevier, 1969, 446 p. ISBN: 0444000615 . Original Russian text published in Butkovskii A.G. Teoriya optimal’nogo upravleniya sistemami s raspredelennymi parametrami. Moscow: Nauka Publ., 1965, 476 p.

5.   Volterra V. Theory of functionals and of integral and integro-differential equations. NY: Dover, 1959, 226 p. ISBN: 0486442845 . Translated to Russian under the title Funktsional’naya teoriya, integral’nye i integrodifferentsial’nye uravneniya, Moscow: Nauka Publ., 1982, 304 p.

6.   Vladimirov V.S. Mathematical problems of the uniform-speed theory of transport. Tr. Matematicheskogo Instituta imeni V.A. Steklova, 1961, vol. 61, pp.  3–158.

7.   Richtmyer R.D. Principles of advanced mathematical physics, vol. 1. NY: Springer-Verlag, 1978, 424 p. doi: 10.1007/978-3-642-46378-5 . Translated to Russian under the title Printsipy sovremennoi matematicheskoi fiziki, Moscow: Mir Publ., 1982, 488 p.

8.   Plotnikov V.I. An energy inequality and the overdeterminacy property of a system of eigenfunctions. Math. USSR-Izv., 1968, vol. 2, no. 4, pp. 695–707. doi: 10.1070/IM1968v002n04ABEH000656

9.   Kerimbekov A.K., Abdyldaeva E.F. On the property of equal ratios in the problem of boundary vector control of elastic vibrations described by Fredholm integro-differential equations. Trudy Inst. Mat. Mekh. UrO RAN, 2016, vol. 22, no. 2, pp. 163–176 (in Russian). doi: 10.21538/0134-4889-2016-22-2-163-176

10.   Lusternik L.A. Sobolev V.J. Elements of functional analysis. Ser. International monographs on advanced mathematics and physics, Delhi: Hindustan Publishing Corp., 1974, 360 p. ISBN: 0470556501 . Original Russian text published in Lyusternik L.A., Sobolev V.I. Elementy funktsional’nogo analiza, Moscow: Nauka Publ., 1965, 520 p.

Cite this article as: A. Kerimbekov, E.F. Abdylaeva. On solvability of the tracking problem in nonlinear vector optimization of oscillation processes. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2024, vol. 30, no. 2, pp. 103–115.